Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T23:06:30.146Z Has data issue: false hasContentIssue false

Strong solvability up to clogging of an effective diffusion–precipitation model in an evolving porous medium

Published online by Cambridge University Press:  14 April 2016

R. SCHULZ
Affiliation:
Department of Mathematics, Friedrich–Alexander University of Erlangen–Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany email: [email protected], [email protected], [email protected]
N. RAY
Affiliation:
Department of Mathematics, Friedrich–Alexander University of Erlangen–Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany email: [email protected], [email protected], [email protected]
F. FRANK
Affiliation:
Department of Computational and Applied Mathematics, Rice University, 6100 Main Street–MS 134, Houston, TX 77005-1892, USA email: [email protected]
H. S. MAHATO
Affiliation:
Department of Mathematics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany email: [email protected]
P. KNABNER
Affiliation:
Department of Mathematics, Friedrich–Alexander University of Erlangen–Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany email: [email protected], [email protected], [email protected]

Abstract

In the first part of this article, we extend the formal upscaling of a diffusion–precipitation model through a two-scale asymptotic expansion in a level set framework to three dimensions. We obtain upscaled partial differential equations, more precisely, a non-linear diffusion equation with effective coefficients coupled to a level set equation. As a first step, we consider a parametrization of the underlying pore geometry by a single parameter, e.g. by a generalized “radius” or the porosity. Then, the level set equation transforms to an ordinary differential equation for the parameter. For such an idealized setting, the degeneration of the diffusion tensor with respect to porosity is illustrated with numerical simulations. The second part and main objective of this article is the analytical investigation of the resulting coupled partial differential equation–ordinary differential equation model. In the case of non-degenerating coefficients, local-in-time existence of at least one strong solution is shown by applying Schauder's fixed point theorem. Additionally, non-negativity, uniqueness, and global existence or existence up to possible closure of some pores, i.e. up to the limit of degenerating coefficients, is guaranteed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alt, H. W. & Luckhaus, S. (1983) Quasilinear elliptic–parabolic differential equations. Math. Z. 183 (3), 311341.Google Scholar
[2] Bader, R. & Merz, W. (2002) Local existence result of the dopant diffusion in arbitrary space dimensions. Z. Anal. Anwend. 21 (1), 91111.Google Scholar
[3] Bergh, J. & Löfström, J. (1976) Interpolation Spaces, an Introduction. Springer-Verlag, Berlin, New York, pp. x+207.CrossRefGoogle Scholar
[4] Besov, O., Il'yin, V. P. & Nikol'skii, S. M. (1979) Integral Transformations of Functions and Embedding Theorems, Vol. 2. Winston & Sons, Washington, D.C., pp. viii+311.Google Scholar
[5] Capdeboscq, Y. & Ptashnyk, M. (2012) Root growth: Homogenization in domains with time dependent partial perforations. ESAIM Control Optim. Calc. Var. 18 (3), 856876.Google Scholar
[6] DiBenedetto, E. (1991) Degenerate Parabolic Equations. Springer-Verlag, New York, pp. xvi+387.Google Scholar
[7] Eck, C. (2005) Analysis of a two-scale phase field model for liquid–solid phase transitions with equiaxed dendritic microstructure. Multiscale Model. Simul. 3 (1), 2849.Google Scholar
[8] Eck, C. (2005) Homogenization of a phase field model for binary mixtures. Multiscale Model. Simul. 3 (1), 127.CrossRefGoogle Scholar
[9] Giaquinta, M. & Martinazzi, L. (2005) An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Ed. della Normale, Pisa.Google Scholar
[10] Hoffmann, J. (2010) Reactive Transport and Mineral Dissolution/Precipitation in Porous Media: Efficient Solution Algorithms, Benchmark Computations and Existence of Global Solutions. Doctoral thesis, University of Erlangen–Nürnberg. Available at: https://www.mso.math.fau.de/fileadmin/am1/projects/PhD_Hoffmann.pdf Google Scholar
[11] Knabner, P. & van Duijn, C. J. (1996) Crystal dissolution in porous media flow. J. Appl. Math. Mech. 76, 329332.Google Scholar
[12] Kräutle, S. (2008) General Multispecies Reactive Transport Problems in Porous Media. Habilitation thesis, University of Erlangen–Nürnberg. Available at: http://www.mso.math.fau.de/fileadmin/am1/projects/Habil_Kraeutle.pdf Google Scholar
[13] Meier, S. (2008) A homogenisation-based two-scale model for reactive transport in media with evolving microstructure. Comptes Rendus Mécanique 336 (8), 623628.Google Scholar
[14] Mikelic, A. & Wheeler, M. F. (2012) On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Math. Models Methods Appl. Sci. 22 (11), 1250031.CrossRefGoogle Scholar
[15] Moyne, C. & Murad, M. A. (2006) Electro–chemo–mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39 (25), 61596190.CrossRefGoogle Scholar
[16] Moyne, C. & Murad, M. A. (2006) A two-scale model for coupled electro-chemo-mechanical phenomena and onsager's reciprocity relation in expansive clays: I homogenization results. Transp. Porous Media 62 (3), 333380.CrossRefGoogle Scholar
[17] Muntean, A. & van Noorden, T. (2013) Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity. Eur. J. Appl. Math. 24, 657677, 10.Google Scholar
[18] Peter, M. (2009) Coupled reaction–diffusion processes inducing an evolution of the microstructure: Analysis and homogenization. Nonlinear Anal. 70 (2), 806821.Google Scholar
[19] Peter, M. (2007) Homogenisation in domains with evolving microstructure. Comptes Rendus Mécanique 335 (7), 357362.Google Scholar
[20] Peter, P. (2007) Homogenisation of a chemical degradation mechanism inducing an evolving microstructure. Comptes Rendus Mécanique 335 (11), 679684.CrossRefGoogle Scholar
[21] Pop, I. S. & Schweizer, B. (2009) Regularization schemes for degenerate richards equations and outflow conditions. Math. Models Methods Appl. Sci. 21 (8), 16851712.CrossRefGoogle Scholar
[22] Radu, F. A., Pop, I. S. & Knabner, P. (2008) Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109 (2), 285311.Google Scholar
[23] Raviart, P. A. & Thomas, J. M. (1977) A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.Google Scholar
[24] Ray, N., Elbinger, T. & Knabner, P. (2015) Upscaling the flow and transport in an evolving porous medium with general interaction potentials. SIAM J. Appl. Math. 75 (5), 21702192.CrossRefGoogle Scholar
[25] Ray, N., van Noorden, T., Frank, F. & Knabner, P. (2012) Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95 (3), 669696.CrossRefGoogle Scholar
[26] Ray, N. van Noorden, T., Radu, F. A., Friess, W. & Knabner, P. (2013) Drug release from collagen matrices including an evolving microstructure. ZAMM Z. Angew Math. Mech. 93 (10–11), pp. 811822.Google Scholar
[27] Redeker, I. S., Pop, M. & Rohde, C. (2014) Upscaling of a tri-phase phase-field model for precipitation in porous media. In: CASA Report, No. 14-31 (2014).Google Scholar
[28] Schmuck, M., Pavliotis, G. & Kalliadasis, S. (2014) Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies. Appl. Math. Lett. 35, 12–17CrossRefGoogle Scholar
[29] Schmuck, M., Pradas, M., Pavliotis, G. & Kalliadasis, S. (2013) Derivation of effective macroscopic stokes–cahn–hilliard equations for periodic immiscible flows in porous media. Nonlinearity 26 (12), 32593277.Google Scholar
[30] Schmuck, M., Pradas, M., Pavliotis, G. A. & Kalliadasis, S. (2012) Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2147), 37053724.Google Scholar
[31] Schulz, R. & Knabner, P. (2016) Modeling and analyzing of biofilm growth in saturated porous media. Math. Method Appl. Sci., submitted, 2016. Preprint Series Angewandte Mathematik, ISSN: 2194-5127, No. 391.Google Scholar
[32] Sethian, J. A. (1999) Level set methods and fast marching methods, Cambridge, pp. xx+378.Google Scholar
[33] Taniuchi, Y. (2006) Remarks on global solvability of 2-d boussinesq equations with non-decaying initial data. Funkcialaj Ekvacioj 49 (1), 3957.CrossRefGoogle Scholar
[34] van Duijn, C. J. & Pop, I. S. (2004) Crystals dissolution and precipitation in porous media: pore scale analysis. J. Reine Angew. Math. 577, 171211.Google Scholar
[35] van Noorden, T. (2009) Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model. Simul. 7 (3), 1220– 1236.CrossRefGoogle Scholar
[36] van Noorden, T. & Pop, S. (2008) A stefan problem modelling crystal dissolution and precipitation. IMA J. Appl. Math. 73 (2), 393411.CrossRefGoogle Scholar
[37] van Noorden, T. & Muntean, A. (2011) Homogenization of a locally-periodic medium with areas of low and high diffusivity. Eur. J. Appl. Math. 22 (5), 493516.Google Scholar
[38] van Noorden, T., Pop, S., Ebigbo, A. & Helmig, R. (2010) An upscaled model for biofilmgrowth in a thin strip. Water Resour. Res. 46 (6), 114.Google Scholar