Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:25:16.009Z Has data issue: false hasContentIssue false

Scattering of a scalar time-harmonic wave by a penetrable obstacle with a thin layer

Published online by Cambridge University Press:  05 November 2015

K. E. BOUTARENE
Affiliation:
USTHB, Faculty of Mathematics, AMNEDP Laboratory, PO Box 32, El Alia 16111, Bab Ezzouar, Algiers, Algeria email: [email protected]
P.-H. COCQUET
Affiliation:
Laboratory of Physics and Mathematical Engineering for Energy and the Environment (PIMENT), University of La Réunion, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde, France email: [email protected]

Abstract

This work looks at the asymptotic behaviour of the solution to the Helmholtz equation in a penetrable domain of $\mathbb{R}$3 with a thin layer of thickness δ which tends to 0. We use the method of multi-scale expansion to derive and justify an asymptotic expansion of the solution with respect to the thickness δ up to any order. We then provide approximate transmission conditions of order two defined on an interface located inside the thin layer, with accuracy up to O2), which allow one to take into account the influence of the thin layer.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Agmon, S., Douglis, A. & Nirenberg, L. (1964) Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17 (1), 3592.Google Scholar
[2] Bendali, A., Cocquet, P.-H. & Tordeux, S. (2012) Scattering of a scalar time-harmonic wave by N small spheres by the method of matched asymptotic expansions. Numer. Anal. Appl. 5 (2), 116123.CrossRefGoogle Scholar
[3] Bendali, A., Cocquet, P.-H. & Tordeux, S. (2015) Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the Foldy theory of isotropic scattering. Accepted for publication in Archive for Rational Mechanics and Analysis 1–43. http://dx.doi.org/10.1007/s00205-015-0915-5.Google Scholar
[4] Bendali, A. & Lemrabet, K. (1996) The effect of a thin coating on the scaterring of the time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Maths. 56 (6), 16641693.Google Scholar
[5] Bendali, A. & Lemrabet, K. (2008) Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57 (3–4), 199227.Google Scholar
[6] Bonnaillie-Noël, V., Dambrine, M., Hérau, F. & Vial, G. (2012) On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42 (2), 931945.Google Scholar
[7] Boutarene, K. E. (2011) Asymptotic analysis for a diffusion problem. C. R. Math. Acad. Sci. Paris 349 (1–2), 5760.Google Scholar
[8] Boutarene, K. E. (2015) Approximate transmission conditions for a Poisson problem at mid-diffusion. Mathematical Modelling and Analysis 20 (1), 5375.Google Scholar
[9] Chamaillard, M., Chaulet, N. & Haddar, H. (2014) Analysis of the factorization method for a general class of boundary conditions. J. Inverse Ill-posed Problems 22 (5), 643670.Google Scholar
[10] Chazarain, J. & Piriou, A. (1982) Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam.Google Scholar
[11] Ciuperca, I. S., Jai, M. & Poignard, C. (2010) Approximate transmission conditions through a rough thin layer. J. Comput. Appl. Math. 234 (6), 18761885.Google Scholar
[12] Ciuperca, I. S., Perrussel, R. & Poignard, C. (2011) Two-scale analysis for very rough thin layers. An explicit characterization of the polarization tensor. J. Math. Pures Appl. 95 (3), 277295.CrossRefGoogle Scholar
[13] Colton, D. & Kress, R. (2012) Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer-Verlag.Google Scholar
[14] Dauge, M., Tordeux, S. & Vial, G. (2006) Matching and multiscale expansions for a model singular perturbation problem. C. R. Acad. Sci. Paris, Ser. I 343 (10), 637642.Google Scholar
[15] Delourme, B., Haddar, H. & Joly, P. (2012) Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. (9), 98 (1), 2871.Google Scholar
[16] Delourme, B., Haddar, H. & Joly, P. (2009) Approximate models for wave propagation across thin periodic interfaces. Research Report RR-7197, INRIA Paris – Rocquencourt.Google Scholar
[17] Delourme, B. & Claeys, X. (2013) High order asymptotics for wave propagation across thin periodic interfaces. Asymptotic Anal. 83 (1–2), 3582.Google Scholar
[18] Destuynder, P. H. (1980) Sur une Justification des Modèles de Paques Minces et de Coques par les Méthodes Asymptotiques, Doctoral Thesis Es-Sciences. Université Paris VI, Paris.Google Scholar
[19] Do Carmo, M. P. (1976) Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[20] Duruflé, M., Haddar, H. & Joly, P. (2006) High order generalized impedance boundary conditions in electromagnetic scattering problems.. C. R. Phys. 7, 533542.Google Scholar
[21] Dyke, M. V. (1975) Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California.Google Scholar
[22] Engquist, B. & Nédélec, J. C. (1993) Effective boundary conditions for acoustic and electromagnetic scattering in thin layers. Research Report CMAP 278, Ecole Polytechnique, France.Google Scholar
[23] Haddar, H., Joly, P. & Nguyen, H. M. (2005) Generalized impedance boundary conditions for scattering by strongly absorbing obstacle: The scalar case. Math. Models Methods Appl. Sci. 15 (8), 12731300.CrossRefGoogle Scholar
[24] Il'in, A. M. (1992) Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, Am. Math. Soc., Providence.CrossRefGoogle Scholar
[25] Lemrabet, K. (1987) Etude de Divers Problèmes aux Limites de Ventcel d'origine Physique ou Mécanique dans des Domaines non Réguliers, Thèse de Doctorat d'état, USTHB, Alger, Algérie.Google Scholar
[26] Li, Y. Y. & Vogelius, M. (2000) Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153 (2), 91151.CrossRefGoogle Scholar
[27] Nédélec, J. C. (2001) Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, 144. Springer-Verlag.Google Scholar
[28] Péron, V. & Poignard, C. (2008) Approximate transmission conditions for time-harmonic Maxwell equations in a domain with thin layer. Research Report RR-6775, INRIA Bordeaux – Sud Ouest.Google Scholar
[29] Perrussel, R. & Poignard, C. (2013) Asymptotic expansion of steady-state potential in a high contrast medium with a thin resistive layer.. Appl. Math. Comp. 221, 4865.Google Scholar
[30] Phillips, R. S. (1973) On the exterior problem for the reduced wave equation. In: Spencer, D. C. (editor), Partial Differential Equations, Proc. Sympos. Pure Math. 23, American Mathematical Society, Providence, RI, pp. 153160.Google Scholar
[31] Poignard, C. (2006) Méthodes Asymptotiques Pour le Calcul des Champs Électromagnétiques dans des Milieux à Couches Minces. Application aux Cellules Biologiques, Thèse de Doctorat, Université Claude Bernard-Lyon 1.Google Scholar
[32] Poignard, C. (2009) About the transmembrane voltage potential of a biological cell in time-harmonic regime, in: Mathematical methods for imaging and inverse problems.. Volume 26 of ESAIM Proc. EDP Sci. Les Ulis 26, 162179.Google Scholar
[33] Poignard, C. (2009) Approximate transmission conditions through a weakly oscillating thin layer. Math. Methods Appl. Sci. 32 (4), 603626.Google Scholar
[34] Rahmani, L. (2004) Ventcel's boundary conditions for a dynamic nonlinear plate. Asymptot. Anal. 38 (3–4), 319337.Google Scholar
[35] Rellich, F. (1943) Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten, Jber.. Deutsch. Math. Verein. 53, 5765.Google Scholar
[36] Schmidt, K. (2008) High-Order Numerical Modeling of Highly Conductive Thin Sheets. PhD thesis, ETH Zurich.Google Scholar
[37] Schmidt, K. & Tordeux, S. (2010) Asymptotic modelling of conductive thin sheets. Z. Angew. Math. Phys. 61 (4), 603626.Google Scholar
[38] Schmidt, K. & Tordeux, S. (2011) High order transmission conditions for thin conductive sheets in magneto-quasistatics. ESAIM, Math. Model. Numer. Anal. 45 (6), 11151140.CrossRefGoogle Scholar
[39] Shewchuk, J. (2002) What is a good linear finite element? Interpolation, Conditioning, Anisotropy, and quality measures. Preprint, University of California at Berkeley.Google Scholar
[40] Taylor, M. E. (1981) Pseudodifferential Operators, Princeton Math. Ser., Vol. 34, Princeton University Press, Princeton, NJ.Google Scholar
[41] Vial, G. (2003) Analyse Multi-échelle et Conditions aux Limites Approchées Pour un Problème avec Couche Mince dans un Domaine à Coin. PhD. thesis, Université de Renne 1, France.Google Scholar