Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T09:20:52.908Z Has data issue: false hasContentIssue false

Network analysis and modelling: Special issue of European Journal of Applied Mathematics

Published online by Cambridge University Press:  02 November 2016

MASON A. PORTER
Affiliation:
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP, UK Department of Mathematics, University of California, Los Angeles, California 90095, USA email: [email protected]
GINESTRA BIANCONI
Affiliation:
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This special issue of the European Journal of Applied Mathematics features research articles on networks, one of the most exciting areas of applied mathematics.

Type
Editorial Announcement
Copyright
Copyright © Cambridge University Press 2016 

References

[1] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. (2008) Synchronization in complex networks. Phys. Rep. 469, 93153.Google Scholar
[2] Ashwin, P., Coombes, S. & Nicks, R. (2016) Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math Neurosci. 6, 2.CrossRefGoogle ScholarPubMed
[3] Barthelemy, M. (2011) Spatial networks. Phys. Rep. 499, 1101.Google Scholar
[4] Boccaletti, S., Bianconi, G., Criado, R., del, Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z. & Zanin, M. (2014) The structure and dynamics of multilayer networks. Phys. Rep. 544, 1122.CrossRefGoogle ScholarPubMed
[5] Burbano, L. D. A., DeLellis, P. & di Bernardo, M. 2016) Self-tuning proportional integral control for consensus in heterogeneous multi-agent systems. Eur. J. Appl. Math. 27, 923940.Google Scholar
[6] Coombes, S. & Thul, R. (2016) Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function. Eur. J. Appl. Math. 27, 904922.CrossRefGoogle Scholar
[7] Cucuringu, M., Rombach, P., Lee, S. H. & Porter, M. A. (2016) Detection of core–periphery structure in networks using spectral methods and geodesic paths. Eur. J. Appl. Math. 27, 846887.Google Scholar
[8] Do, A.-L., Boccaletti, S., Epperlein, J., Siegmund, S. & Gross, T. (2016) Topological stability criteria for networking dynamical systems with Hermitian Jacobian. Eur. J. Appl. Math. 27, 888903.Google Scholar
[9] Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys. 80, 12751335.Google Scholar
[10] Fortunato, S. (2010) Community detection in graphs. Phys. Rep. 486, 75174.Google Scholar
[11] Fortunato, S. & Hric, D. (2016) Community detection in networks: A user guide. Phys. Rep., in press (arXiv:1608.00163).Google Scholar
[12] Gleich, D. F. (2015) PageRank beyond the Web. SIAM Rev. 57, 321363.Google Scholar
[13] Gleich, D. F. & Kloster, K. (2016) Seeded PageRank solution paths. Eur. J. Appl. Math. 27, 812845.CrossRefGoogle Scholar
[14] Grindrod, P., Higham, D. J., Laflin, P., Otley, A. & Ward, J. A. (2016) Inverse network sampling to explore online brand allegiance. Eur. J. Appl. Math. 27, 958970.Google Scholar
[15] Holme, P. (2015) Modern temporal network theory: A colloquium. Eur. Phys. J. B 88, 234.Google Scholar
[16] Holme, P. & Saramäki, J. (2012) Temporal networks. Phys. Rep. 519, 97125.Google Scholar
[17] Jackson, M. O. (2010) Social and Economic Networks, Princeton University Press, Princeton, NJ, USA.Google Scholar
[18] Jackson, M. O. & Zenou, Y. (2014) Games on networks. In: Young, P. & Zamir, S. (editors), Handbook of Game Theory with Economic Applications, Vol. 4, Elsevier, Amsterdam, The Netherlands, pp. 95163.Google Scholar
[19] Jacobs, A. Z. & Clauset, A. (2014) A unified view of generative models for networks: Models, methods, opportunities, and challenges. In: NIPS Workshop on Networks: From Graphs to Rich Data (arXiv:1411.4070).Google Scholar
[20] Kivelä, M., Arenas, A., Barthélemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014) Multilayer networks. J. Complex Netw. 2, 203271.Google Scholar
[21] Kolaczyk, E. D. (2009) Statistical Analysis of Network Data: Methods and Notes, Springer-Verlag, Berlin, Germany.Google Scholar
[22] Liu, Y.-Y. & Barabási, A.-L. (2016) Control principles of complex networks. Rev. Mod. Phys., 88, 035006.Google Scholar
[23] , L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C. & Zhou, T. (2016) Vital nodes identification in complex networks. Phys. Rep., 650, 163.Google Scholar
[24] Newman, M. E. J. (2010) Networks: An Introduction, Oxford University Press, Oxford, UK.Google Scholar
[25] Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. (2015) Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925979.Google Scholar
[26] Porter, M. A. & Gleeson, J. P. (2016) Dynamical Systems on Networks: A Tutorial, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Vol. 4, Springer-Verlag, Heidelberg, Germany.CrossRefGoogle Scholar
[27] Porter, M. A., Onnela, J.-P. & Mucha, P. J. (2009) Communities in networks. Not. Am. Math. Soc. 56, 10821097, 1164–1166.Google Scholar
[28] Saberi, A. A. (2015) Recent advances in percolation theory and its applications. Phys. Rep. 578, 132.Google Scholar
[29] Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J. & Gross, T. (2013) Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 16451664.Google Scholar
[30] Schoch, D. & Brandes, U. (2016) Re-conceptualizing centrality in social networks. Eur. J. Appl. Math. 27, 971985.CrossRefGoogle Scholar
[31] Strogatz, S. H. (2001) Exploring complex networks. Nature 410, 268276.Google Scholar
[32] Vestergaard, C. L., Valdano, E., Génois, M., Poletto, C., Colizza, V. & Barrat, A. (2016) Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk. Eur. J. Appl. Math. 27, 941957.Google Scholar
[33] Wasserman, S. & Faust, K. (1994) Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, UK.Google Scholar