Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:20:05.851Z Has data issue: false hasContentIssue false

Multirate partial differential algebraic equations for simulating radio frequency signals

Published online by Cambridge University Press:  01 December 2007

ROLAND PULCH
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany E-mail: [email protected], [email protected], [email protected]
MICHAEL GÜNTHER
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany E-mail: [email protected], [email protected], [email protected]
STEPHANIE KNORR
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany E-mail: [email protected], [email protected], [email protected]

Abstract

In radio frequency (RF) applications, electric circuits produce signals exhibiting fast oscillations, whereas the amplitude and frequency may change slowly in time. Thus, solving a system of differential algebraic equations (DAEs), which describes the circuit's transient behaviour, becomes inefficient, since the fast rate restricts the step sizes in time. A multivariate model is able to decouple the widely separated time scales of RF signals and provides an alternative approach. Consequently, a system of DAEs changes into a system of multirate partial differential algebraic equations (MPDAEs). The determination of multivariate solutions allows for the exact reconstruction of corresponding time-dependent signals. Hence, an efficient numerical simulation is obtained by exploiting the periodicities in fast time scales. We outline the theory of this multivariate approach with respect to the simulation of amplitude as well as frequency modulated signals. Furthermore, a survey of numerical methods for solving the arising problems of MPDAEs is given.

Type
A Survey in Mathematics for Industry
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brachtendorf, H. G. & Laur, R. (2000) Multi-rate PDE methods for high Q oscillators. In: N. Mastorakis, (editor), Problems in Modern Applied Mathematics. CSCC 2000, MCP 2000, MCME 2000 Multi-conference, Athens, July 2000. World Scientific 2000, pp. 391–398.Google Scholar
[2]Brachtendorf, H. G., Welsch, G., Laur, R. & Bunse-Gerstner, A. (1996) Numerical steady state analysis of electronic circuits driven by multi-tone signals. Electric. Eng. 79, 103112.CrossRefGoogle Scholar
[3]Brachtendorf, H. G., Welsch, G. & Laur, R. (1997) A novel time-frequency method for the simulation of the steady state of circuits driven by multi-tone signals. IEEE Int. Symp. Circuits Syst. 9, 15081511.Google Scholar
[4]Brachtendorf, H. G., Welsch, G. & Laur, R. (1998) A time-frequency algorithm for the simulation of the initial transient response of oscillators. In: Proceedings of 1998 IEEE International Symposium on Circuits and Systems, pp. 296–299.CrossRefGoogle Scholar
[5]Chua, L. O. & Ushida, A. (1981) Algorithms for computing almost periodic steady-state response of non-linear systems to multiple input frequencies. IEEE Trans. CAS 28 10, 953971.CrossRefGoogle Scholar
[6]Estèvez chwarz, D. & Tischendorf, C. (2000) Structural analysis for electric circuits and consequences for modified nodal analysis. Int. J. Circ. Theor. Appl. 28, 131162.3.0.CO;2-W>CrossRefGoogle Scholar
[7]Günther, M. & Feldmann, U. (1999) CAD based electric circuit modeling in industry I: Mathematical structure and index of network equations. Surv. Math. Ind. 8, 97129.Google Scholar
[8]Günther, M., Feldmann, U. & ter Maten, E. J. W. (2005) Modeling and discretization of circuit problems. In: Schilders, W.H.A. & Maten, E. J. W. ter (editors), Handbook of Numerical Analysis. Special Volume Numerical Analysis of Electromagnetism. Elsevier North Holland, Amsterdam, 523659.Google Scholar
[9]Hairer, E., Lubich, C. & Wanner, G. (2006) Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin.Google Scholar
[10]Hairer, E., Nφrsett, S. P. & Wanner, G. (1993) Solving Ordinary Differential Equations. Vol. 1: Nonstiff Problems. (2nd ed.). Springer, Berlin.Google Scholar
[11]Hairer, E. & Wanner, G. (1996) Solving Ordinary Differential Equations. Vol. 2: Stiff and Differential-Algebraic Equations. (2nd ed.). Springer, Berlin.CrossRefGoogle Scholar
[12]Ho, C. W., Ruehli, A. E. & Brennan, P. A. (1975) The modified nodal approach to network analysis. IEEE Trans. CAS 22 (6), 505509.Google Scholar
[13]Houben, S. H. M. J. (2004) Simulating multi-tone free-running oscillators with optimal sweep following. In: Schilders, W. H. A., Maten, E. J. W. ter & Houben, S. H. M. J. (editors), Scientific Computing in Electrical Engineering. Mathematics in Industry 4, Springer, Berlin, pp. 240247.CrossRefGoogle Scholar
[14]Horneber, E. H. (1976) Analyse nichtlinearer RLCÜ-Netzwerke mit Hilfe der gemischten Potentialfunktion mit einer systematischen Darstellung der Analyse nichtlinearer dynamischer Netzwerke. PhD Thesis, University Kaiserslautern.Google Scholar
[15]Kampowsky, W., Rentrop, P. & Schmitt, W. (1992) Classification and numerical simulation of electric circuits. Surv. Math. Ind. 2, 2365.Google Scholar
[16]Knorr, S. & Günther, M. (2006) Index analysis of multirate partial differential–algebraic systems in RF-circuits. In: Anile, A. M., Alì, G. & Mascali, G. (editors), Scientific Computing in Electrical Engineering. Mathematics in Industry 9, Springer, Berlin, pp. 93100.CrossRefGoogle Scholar
[17]Knorr, S. & Feldmann, U. (2006) Simulation of pulsed signals in MPDAE-modelled SC-circuits. In: Bucchianico, A. Di, Mattheij, R. M. M. & Peletier, M. A., (editors), Progress in Industrial Mathematics at ECMI 2004. Mathematics in Industry 8, Springer, Berlin, pp. 159163.CrossRefGoogle Scholar
[18]Kundert, K. S., Sangiovanni-Vincentelli, A. & Sugawara, T. (1988) Techniques for finding the periodic steady-state response of circuits. In: Ozawa, T., (editor), Analog Methods for Computer-Aided Circuit Analysis and Diagnosis. Marcel Dekker Inc., New York, pp. 169203.Google Scholar
[19]Lang, B. (2002) Einbettungsverfahren für Netzwerkgleichungen. PhD Thesis, University Bremen, Shaker, Aachen.Google Scholar
[20]Lehtovuori, A. (2003) Multivariate Steady-State Time-Domain Analysis Method. Master's thesis, Helsinki University of Technology.Google Scholar
[21]Lehtovuori, A., Virtanen, J. & Valtonen, M. (2003) GMRES preconditioner for multivariate steady-state time-domain method. In: Proceedings of IMS'2003, Philadelphia, 8–13 June 2003, pp. 2129–2132.Google Scholar
[22]Narayan, O. & Roychowdhury, J. (2003) Analyzing oscillators using multitime PDEs. IEEE Trans. CAS I, 50, 894903.Google Scholar
[23]Ngoya, E. & Larcheveque, R. (June 1996) Envelop transient analysis: A new method for the transient and steady state analysis of microwave communication circuits and systems. IEEE Microwave Theory Tech. Symp. Digest, 1365–1368.Google Scholar
[24]Pulch, R. & Günther, M. (2002) A method of characteristics for solving multirate partial differential equations in radio frequency application. Appl. Numer. Math. 42, 397409.Google Scholar
[25]Pulch, R. (2003) Finite difference methods for multi time scale differential algebraic equations. Z. Angew. Math. Mech. 83 (9), 571583.CrossRefGoogle Scholar
[26]Pulch, R. (2003) A parallel finite difference algorithm for multirate partial differential algebraic equations. In: Antreich, K., Bulirsch, R., Gilg, A. & Rentrop, P., (editors), Modeling, Simulation and Optimization of Integrated Circuits. International Series of Numerical Mathematics (2004) Vol. 146, Birkhäuser, Basel, pp. 153166.CrossRefGoogle Scholar
[27]Pulch, R. (2004) PDAE Methoden zur numerischen Simulation quasiperiodischer Grenzzyklen von Oszillatorschaltungen. PhD Thesis, Munich University of Technology, VDI, Düsseldorf.Google Scholar
[28]Pulch, R. (2005) Multi time scale differential equations for simulating frequency modulated signals. Appl. Numer. Math. 53 (2–4), 421436.CrossRefGoogle Scholar
[29]Pulch, R. (2006) Warped MPDAE models with continuous phase conditions. In: Bucchianico, A. Di, Mattheij, R. M. M. & Peletier, M. A. (editors), Progress in Industrial Mathematics at ECMI 2004. Mathematics in Industry 8, Springer, Berlin, pp. 179183.CrossRefGoogle Scholar
[30]Pulch, R. (2006) Semidiscretisation methods for warped MPDAEs. In: Anile, A. M., Alì, G. & Mascali, G. (editors), Scientific Computing in Electrical Engineering. Mathematics in Industry 9, Springer, Berlin, pp. 101106.CrossRefGoogle Scholar
[31]Pulch, R. (submitted for publication) Variational methods for solving warped multirate partial differential algebraic equations. SIAM J. Sci. Comput.Google Scholar
[32]Roychowdhury, J. (1997) Efficient methods for simulating highly non-linear multi-rate circuits. In Design Automation Conference, Chiba, Japan, pp. 269274.Google Scholar
[33]Roychowdhury, J. (2001) Analysing circuits with widely-separated time scales using numerical PDE methods. IEEE Trans. CAS I 48 5, 578594.Google Scholar
[34]Simeon, B., Arnold, M. (2000) Coupling DAE's and PDE's for simulating the interaction of pantograph and catenary. Math. Comp. Model. Syst. 6, 129144.Google Scholar
[35]Striebel, M. (2006) Hierarchical Mixed Multirating for Distributed Integration of DAE Network Equations in Chip Design. PhD Thesis, University of Wuppertal, VDI, Düsseldorf.CrossRefGoogle Scholar
[36]Tischendorf, C. (1999) Topological index calculation of differential-algebraic equations in circuit simulation. Surv. Math. Ind. 8, 187199.Google Scholar
[37]Ushida, A. & Chua, L. O. (1984) Frequency-domain analysis of non-linear circuits driven by multi-tone signals. IEEE Trans. CAS 31 9, 766779.CrossRefGoogle Scholar
[38]Zhu, L. L. & Christoffersen, C. E. (2005) Fast transient analysis of oscillators using multiple time scales with accurate initial conditions. In: IEEE Canadian Conference on Computer and Electrical Engineering Digest, Saskatoon, May 2005, pp. 700–703.Google Scholar
[39]Zhu, L. L. & Christoffersen, C. E. (2005) Adaptive harmonic balance analysis of oscillators using multiple time scales. In: 3rd International IEEE Northeast Workshop on Circuits and Systems Digest, Quebec, Canada, June 2005, pp. 187190.Google Scholar