Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T20:24:32.820Z Has data issue: false hasContentIssue false

Mean-field models for segregation dynamics

Published online by Cambridge University Press:  23 December 2020

MARTIN BURGER
Affiliation:
Department Mathrmatik Cauerstr, 11 91058 Erlangen, Germany email: [email protected]
JAN-FREDERIK PIETSCHMANN
Affiliation:
Technische Universität Chemnitz, Reichenhainer Straße 41, Chemnitz, Germany email: [email protected]
HELENE RANETBAUER
Affiliation:
University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, Austria emails: [email protected]; [email protected]
CHRISTIAN SCHMEISER
Affiliation:
University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, Austria emails: [email protected]; [email protected]
MARIE-THERESE WOLFRAM
Affiliation:
University of Warwick, Coventry CV4 7AL, UK RICAM, Altenbergerstr. 69, 4040 Linz, Austria email: [email protected]

Abstract

In this paper, we derive and analyse mean-field models for the dynamics of groups of individuals undergoing a random walk. The random motion of individuals is only influenced by the perceived densities of the different groups present as well as the available space. All individuals have the tendency to stay within their own group and avoid the others. These interactions lead to the formation of aggregates in case of a single species and to segregation in the case of multiple species. We derive two different mean-field models, which are based on these interactions and weigh local and non-local effects differently. We discuss existence and stability properties of solutions for both models and illustrate the rich dynamics with numerical simulations.

Type
Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amar, B. M. (2016) Collective chemotaxis and segregation of active bacterial colonies. Sci. Rep. 6, 21269.CrossRefGoogle ScholarPubMed
Anguige, K. & Schmeiser, C. (2008) A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. J. Math. Biol. 58(3), 395.CrossRefGoogle ScholarPubMed
Berendsen, J., Burger, M. & Pietschmann, J.-F. (2017) On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion. Nonlinear Anal. 159, 1039. Advances in Reaction-Cross-Diffusion Systems.CrossRefGoogle Scholar
Bertsch, M., Passo, R. D. & Mimura, M. (2010) A free boundary problem arising in a simplified tumour growth model of contact inhibition. Interfaces Free Boundaries 12(2), 235250.CrossRefGoogle Scholar
Bruna, M. & Jonathan Chapman, S. (2012) Diffusion of multiple species with excluded-volume effects. J. Chem. Phys. 137(20), 204116.CrossRefGoogle ScholarPubMed
Burger, M., Di Francesco, M., Fagioli, S. & Stevens, A. (2018) Sorting phenomena in a mathematical model for two mutually atrracting/repelling species. Technical report, Arxiv. arXiv:1704.04179v2.CrossRefGoogle Scholar
Burger, M., Di Francesco, M., Pietschmann, J.-F. & Schlake, B. (2010) Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42(6), 28422871.CrossRefGoogle Scholar
Burger, M., Dolak-Struss, Y., Schmeiser, C. (2008) Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions. Commun. Math. Sci. 6(1), 128.CrossRefGoogle Scholar
Burger, M., Fetecau, R. & Huang, Y. (2014) Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst. 13(1), 397424.CrossRefGoogle Scholar
Burger, M., Haškovec, J. & Wolfram, M.-T. (2013) Individual based and mean-field modeling of direct aggregation. Physica D Nonlinear Phenomena 260, 145158.CrossRefGoogle ScholarPubMed
Burger, M., Hittmeir, S., Ranetbauer, H. & Wolfram, M.-T. (2016) Lane formation by side-stepping. SIAM J. Math. Anal. 48(2), 9811005.CrossRefGoogle Scholar
Canizo, J. A., Carrillo, J. A. & Rosado, J. (2010) Collective behavior of animals: Swarming and complex patterns. Arbor 2010, 10351049.CrossRefGoogle Scholar
Carrillo, J. A., Fagioli, S., Santambrogio, F. & Schmidtchen, M. (2017) Splitting schemes & segregation in reaction-(cross-) diffusion systems. arXiv:1711.05434.Google Scholar
Carrillo, J. A., Huang, Y. & Schmidtchen, M. (2018) Zoology of a nonlocal cross-diffusion model for two species. SIAM J. Appl. Math. 78(2), 10781104.CrossRefGoogle Scholar
Degond, P., Frouvelle, A. & Merino-Aceituno, S. (2017) A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27(06), 10051049.CrossRefGoogle Scholar
Deimling, K. (1977) Ordinary Differential Equations in Banach Spaces, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York.CrossRefGoogle Scholar
Dieterich, P., Klages, R., Preuss, R. & Schwab, A. (2008) Anomalous dynamics of cell migration. PNAS 105, 459463.CrossRefGoogle ScholarPubMed
Dolak, Y. & Schmeiser, C. (2005) The Keller–Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66(1), 286308.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. (2013) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42, Springer Science & Business Media, New York.Google Scholar
Jüngel, A. (2015) The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28(6), 1963.CrossRefGoogle Scholar
Otto, F. (2001) The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equations 26(1–2), 101174.CrossRefGoogle Scholar
Perthame, B., Schmeiser, C., Tang, M. & Vauchelet, N. (2011) Travelling plateaus for a hyperbolic Keller–Segel system with attraction and repulsion: existence and branching instabilities. Nonlinearity 24(4), 1253.CrossRefGoogle Scholar
Schelling, T. C. (1969) Models of segregation. Am. Econ. Rev. 59(2), 488493.Google Scholar
Tao, Y. & Wang, Z.-A. (2013) Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(01), 136.CrossRefGoogle Scholar
Turing, A. (1952) The chemical basis of morphogenesis. Philos. Trans. R. Soc. London B Biol. Sci. 237(641), 3772.Google Scholar
Wilkinson, D. G. & Battle, E. (2012) Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb Perspect Biol. 4, a008227.Google Scholar
Zhang, H.-T., Zhai, C. & Chen, Z. (2011) A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Trans. Autom. Control 56(2), 430435.CrossRefGoogle Scholar