Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Rubinstein, J.
1995.
On the equilibrium position of Ginzburg Landau vortices.
ZAMP Zeitschrift f�r angewandte Mathematik und Physik,
Vol. 46,
Issue. 5,
p.
739.
Lin, Fang-Hua
1997.
Nonlinear Partial Differential Equations in Geometry and Physics.
p.
71.
Schätzle, Reiner
and
Stoth, Barbara
1999.
The Stationary Mean Field Model of Superconductivity: Partial Regularity of the Free Boundary.
Journal of Differential Equations,
Vol. 157,
Issue. 2,
p.
319.
Du, Qiang
2000.
Convergence Analysis of a Numerical Method for a Mean Field Model of Superconducting Vortices.
SIAM Journal on Numerical Analysis,
Vol. 37,
Issue. 3,
p.
911.
Chapman, S. J.
2000.
A Hierarchy of Models for Type-II Superconductors.
SIAM Review,
Vol. 42,
Issue. 4,
p.
555.
Chen, Zhiming
and
Du, Qiang
2000.
An upwinding mixed finite element method for a mean field model of superconducting vortices.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 34,
Issue. 3,
p.
687.
Bonnet, A.
Chapman, S. J.
and
Monneau, R.
2000.
Convergence of Meissner Minimizers of the Ginzburg--Landau Energy of Superconductivity as $\kappa\to +\infty$.
SIAM Journal on Mathematical Analysis,
Vol. 31,
Issue. 6,
p.
1374.
Weinan, E.
2001.
Mathematics Unlimited — 2001 and Beyond.
p.
407.
Aftalion, Amandine
Sandier, Etienne
and
Serfaty, Sylvia
2001.
Pinning phenomena in the Ginzburg–Landau model of superconductivity.
Journal de Mathématiques Pures et Appliquées,
Vol. 80,
Issue. 3,
p.
339.
Chapman, S. J.
2002.
Nonlinear PDE’s in Condensed Matter and Reactive Flows.
p.
375.
Jerrard, Robert L.
and
Soner, Halil Mete
2002.
Limiting Behavior of the Ginzburg–Landau Functional.
Journal of Functional Analysis,
Vol. 192,
Issue. 2,
p.
524.
Du, Qiang
and
Zhang, Ping
2003.
Existence of Weak Solutions to Some Vortex Density Models.
SIAM Journal on Mathematical Analysis,
Vol. 34,
Issue. 6,
p.
1279.
Sandier, Etienne
and
Serfaty, Sylvia
2003.
Limiting vorticities for the Ginzburg-Landau equations.
Duke Mathematical Journal,
Vol. 117,
Issue. 3,
Sandier, Etienne
and
Serfaty, Sylvia
2004.
Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau.
Communications on Pure and Applied Mathematics,
Vol. 57,
Issue. 12,
p.
1627.
Du, Qiang
2005.
Numerical approximations of the Ginzburg–Landau models for superconductivity.
Journal of Mathematical Physics,
Vol. 46,
Issue. 9,
Masmoudi, Nader
and
Zhang, Ping
2005.
Global solutions to vortex density equations arising from sup-conductivity.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 22,
Issue. 4,
p.
441.
Zhang, Ping
2006.
Weak solutions to a nonlinear variational wave equation and some related problems.
Applications of Mathematics,
Vol. 51,
Issue. 4,
p.
427.
Belmiloudi, Aziz
2006.
Robust control problems of vortex dynamics in superconducting films with Ginzburg‐Landau complex systems.
Abstract and Applied Analysis,
Vol. 2006,
Issue. 1,
Antontsev, S. N.
and
Chemetov, N. V.
2007.
Flux of Superconducting Vortices Through a Domain.
SIAM Journal on Mathematical Analysis,
Vol. 39,
Issue. 1,
p.
263.
Ambrosio, Luigi
and
Serfaty, Sylvia
2008.
A gradient flow approach to an evolution problem arising in superconductivity.
Communications on Pure and Applied Mathematics,
Vol. 61,
Issue. 11,
p.
1495.