Article contents
Large data limit for a phase transition model with the p-Laplacian on point clouds
Published online by Cambridge University Press: 14 November 2018
Abstract
The consistency of a non-local anisotropic Ginzburg–Landau type functional for data classification and clustering is studied. The Ginzburg–Landau objective functional combines a double well potential, that favours indicator valued functions, and the p-Laplacian, that enforces regularity. Under appropriate scaling between the two terms, minimisers exhibit a phase transition on the order of ɛ = ɛn, where n is the number of data points. We study the large data asymptotics, i.e. as n → ∝, in the regime where ɛn → 0. The mathematical tool used to address this question is Γ-convergence. It is proved that the discrete model converges to a weighted anisotropic perimeter.
Keywords
MSC classification
- Type
- Papers
- Information
- Copyright
- © Cambridge University Press 2018
Footnotes
The research of R. C. was funded by National Science Foundation under Grant No. DMS-1411646. Part of the research of M. T. was funded by the National Science Foundation under Grant No. CCT-1421502.
References
- 5
- Cited by