Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:51:11.263Z Has data issue: false hasContentIssue false

Identifiability of stochastically modelled reaction networks

Published online by Cambridge University Press:  15 February 2021

GERMAN ENCISO
Affiliation:
Department of Mathematics, University of California, Irvine, CA92697, USA e-mail: [email protected]
RADEK ERBAN
Affiliation:
Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK e-mail: [email protected]
JINSU KIM
Affiliation:
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA92697, USA e-mail: [email protected]

Abstract

Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous-time Markov processes. In this manuscript, the identifiability of the underlying network structure with a given stochastic system dynamics is studied. It is shown that some data types related to the associated stochastic dynamics can uniquely identify the underlying network structure as well as the system parameters. The accuracy of the presented network inference is investigated when given dynamical data are obtained via stochastic simulations.

Type
Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. & Kurtz, T. (2011) Continuous time Markov chain models for chemical reaction networks. In: Koeppl, H. (editor), Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, Springer, New York, pp. 342.CrossRefGoogle Scholar
Anderson, D. & Kurtz, T. (2015) Stochastic Analysis of Biochemical Systems, Springer, Cham.CrossRefGoogle Scholar
Angeli, D. (2009) A tutorial on chemical reaction network dynamics. Eur. J. Control 15, 398406.CrossRefGoogle Scholar
Baldi, P. & Brunak, S. (2001) Bioinformatics: The Machine Learning Approach, MIT Press.Google Scholar
Catanach, T., Vo, H. & Munsky, B. (2020) Bayesian inference of stochastic reaction networks using multifidelity sequential tempered Markov chain Monte Carlo. arXiv preprint arXiv:2001.01373.CrossRefGoogle Scholar
Chattopadhyay, I., Kuchina, A., Süel, G. & Lipson, H. (2013) Inverse Gillespie for inferring stochastic reaction mechanisms from intermittent samples. Proc. Natl. Acad. Sci. 110(32), 1299012995.CrossRefGoogle ScholarPubMed
Craciun, G. & Feinberg, M. (2006) Multiple equilibria in complex chemical reaction networks: Ii. the species-reactions graph. SIAM J. Appl. Math. 66(4), 13211338.CrossRefGoogle Scholar
Craciun, G., Kim, J., Pantea, C. & Rempala, G. (2013) Statistical model for biochemical network inference. Commun. Stat. Simul. Comput. 42(1), 121137.CrossRefGoogle ScholarPubMed
Craciun, G. & Pantea, C. (2008) Identifiability of chemical reaction networks. J. Math. Chem. 44, 244259.CrossRefGoogle Scholar
Duncan, A., Liao, S., Vejchodský, T., Erban, R. & Grima, R. (2015) Noise-induced multistability in chemical systems: discrete versus continuum modeling. Phys. Rev. E 91, 042111.CrossRefGoogle ScholarPubMed
Erban, R., Chapman, S. J., Kevrekidis, I. & Vejchodský, T. (2009) Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model. SIAM J. Appl. Math. 70(3), 9841016.CrossRefGoogle Scholar
Erban, R. & Chapman, S. J. (2020) Stochastic Modelling of Reaction-Diffusion Processes. Cambridge Texts in Applied Mathematics, Cambridge University Press, 308 p.Google Scholar
Feinberg, M. (1989) Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci. 44(9), 18191827.CrossRefGoogle Scholar
Feinberg, M. (2019) Foundations of Chemical Reaction Network Theory, Springer, Cham, Switzerland.CrossRefGoogle Scholar
Gadgil, C., Lee, C. & Othmer, H. (2005) A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901946.CrossRefGoogle ScholarPubMed
Golightly, A. & Wilkinson, D. (2006) Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comput. Biol. 13(3), 838851.CrossRefGoogle ScholarPubMed
Gupta, A. & Rawlings, J. (2014) Comparison of parameter estimation methods in stochastic chemical kinetic models: examples in systems biology. AIChE J. 60(4), 12531268.CrossRefGoogle ScholarPubMed
Jahnke, T. & Huisinga, W. (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 126.CrossRefGoogle ScholarPubMed
Komorowski, M., Costa, M., Rand, D. & Stumpf, M. (2011) Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. 108(21), 86458650.CrossRefGoogle ScholarPubMed
Kurtz, T. (1972) The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 29762978.CrossRefGoogle Scholar
Langary, D. & Nikoloski, Z. (2019) Inference of chemical reaction networks based on concentration profiles using an optimization framework. Chaos Interdiscip. J. Nonlinear Sci. 29(11), 113121.CrossRefGoogle ScholarPubMed
Liao, S., Vejchodský, T. & Erban, R. (2015) Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. J. R. Soc. Interface 12(108), 20150233.CrossRefGoogle ScholarPubMed
Loskot, P., Atitey, K. & Mihaylova, L. (2019) Comprehensive review of models and methods for inferences in bio-chemical reaction networks. Front. Genet. 10, 549.CrossRefGoogle ScholarPubMed
Markowetz, F. & Spang, R. (2007) Inferring cellular networks–a review. BMC Bioinformatics 8(6), S5.CrossRefGoogle ScholarPubMed
Plesa, T., Erban, R. & Othmer, H. (2019) Noice-induced mixing and multimodality in reaction networks. Eur. J. Appl. Math. 30, 887911.CrossRefGoogle Scholar
Plesa, T., Vejchodský, T. & Erban, R. (2016) Chemical reaction systems with a homoclinic bifurcation: an inverse problem. J. Math. Chem. 54(10), 18841915.CrossRefGoogle Scholar
Plesa, T., Vejchodský, T. & Erban, R. (2017) Test models for statistical inference: two-dimensional reaction systems displaying limit cycle bifurcations and bistability. In: Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, Springer International Publishing, Cham, Switzerland, pp. 327.CrossRefGoogle Scholar
Plesa, T., Zygalakis, K., Anderson, D. & Erban, R. (2018) Noise control for molecular computing. J. R. Soc. Interface 15(144), 20180199.CrossRefGoogle ScholarPubMed
Szederkényi, G., Banga, J. & Alonso, A. (2011) Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC Syst. Biol. 5(1), 177.CrossRefGoogle ScholarPubMed
Villaverde, A. & Banga, J. (2014) Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J. R. Soc. Interface 11(91), 20130505.CrossRefGoogle ScholarPubMed
Walter, E. & Pronzato, L. (1997) Identification of parametric models from experimental data. Commun. Control Eng., Springer, London, 8.Google Scholar
Wang, S., Lin, J., Sontag, E. & Sorger, P. (2019) Inferring reaction network structure from single-cell, multiplex data, using toric systems theory. PLOS Comput. Biol. 15, 125.CrossRefGoogle ScholarPubMed
Warne, D., Baker, R. & Simpson, M. (2019) Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art. J. R. Soc. Interface 16(151), 20180943.CrossRefGoogle ScholarPubMed