Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:38:04.152Z Has data issue: false hasContentIssue false

Formal derivation of a bilayer model coupling shallow water and Reynolds lubrication equations: evolution of a thin pollutant layer over water

Published online by Cambridge University Press:  27 June 2013

E. D. FERNÁNDEZ-NIETO
Affiliation:
Departamento Matemática Aplicada I, Universidad de Sevilla, Seville, Spain emails: [email protected], [email protected]
G. NARBONA-REINA
Affiliation:
Departamento Matemática Aplicada I, Universidad de Sevilla, Seville, Spain emails: [email protected], [email protected]
J. D. ZABSONRÉ
Affiliation:
Unité de Formation et de Recherche en Sciences et Techniques, Département de Mathématiques, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso email: [email protected]

Abstract

In this paper, a bilayer model is derived to simulate the evolution of a thin film flow over water. This model is derived from the incompressible Navier–Stokes equations together with suitable boundary conditions including friction and capillary effects. The derivation is based on the different properties of the fluids; thus, we perform a multiscale analysis in space and time, and a different asymptotic analysis to derive a system coupling two different models: the Reynolds lubrication equation for the upper layer and the shallow water model for the lower one. We prove that the model verifies a dissipative entropy inequality up to a second-order term. Moreover, we propose a correction of the model – by taking into account the second-order extension for the pressure – that admits an exact dissipative entropy inequality. Two numerical tests are presented. In the first test, we compare the numerical results with the viscous bilayer shallow water model proposed in Narbona-Reina et al. (Comput. Model. Eng. Sci., 2009, Vol. 43, pp. 27–71). In the second test, the objective is to show some of the characteristic situations that can be studied with the proposed model. We simulate a problem of pollutant dispersion near the coast. For this test, the influence of the friction coefficient on the coastal area affected by the pollutant is studied.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Audusse, E. (2005) A multilayer Saint-Venant model. Disc. Cont. Dyn. System. B 5 (2), 189214.CrossRefGoogle Scholar
[2]Blyth, M. G. & Pozrikidis, C. (2005) Stagnation-point flow against a liquid film on a plane wall. Acta Mech. 180, 203219.Google Scholar
[3]Castro, M. J., Ferreiro, A. M., García, J. A., González, J. M., Macías, J., Parés, C. & Vázquez, M. E. (2005) On the numerical treatment of wet/dry fronts in shallow flows: Applications to one-layer and two-layer systems. Math. Comp. Model. 42 (3–4), 419439.CrossRefGoogle Scholar
[4]CastroDíaz, M. J. Díaz, M. J., Fernández-Nieto, E. D. & Ferreiro, A. M. (2008) Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput. Fluids 37, 299316.CrossRefGoogle Scholar
[5]Chacón, T., Domínguez, A. & Fernández, E. D. (2004) Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations. C. R. Acad. Sci. Paris I 338, 8590.Google Scholar
[6]Chueskov, I. D., Raugel, G. & Rekalo, A. M. (2005) Interface boundary value problem for the Navier–Stokes equations in thin domains. J. Differ. Equ. 208, 449493.CrossRefGoogle Scholar
[7]Cimatti, G. (1987) A rigorous justification of the Reynolds equation. Q. Appl. Math. XLV (4), 627644.CrossRefGoogle Scholar
[8]Cope, W. F. (1949) The hydrodynamic theory of film lubrication. Proc. R. Soc. London, Ser. A 197, 201217.Google Scholar
[9]Cordier, S., Lucas, C. & Zabsonré, J. D. D. (2012) A two time-scale model for tidal bed-load transport. Commun. Math. Sci. 10, 875888.Google Scholar
[10]Dal Maso, G., LeFloch, P. G. & Murat, F. (1995) Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74, 483548.Google Scholar
[11]Dowson, D. (1962) A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4, 159170.Google Scholar
[12]Elrod, H. G. (1960) A derivation of the basic equations for hydrodynamics lubrication with a fluid having constant properties. Q. Appl. Math. 27, 349385.CrossRefGoogle Scholar
[13]Ferrari, S. & Saleri, F. (2004) A new to dimensional shallow-water model including pressure effects and slow varying bottom topography. M2AN 38 (2), 211234.Google Scholar
[14]Gerbeau, F. & Perthame, B. (2001) Derivation of viscous Saint–Venant system for laminar shallow-water: Numerical validation. Disc. Cont. Dyn. Syst. B 1 (1), 89102.Google Scholar
[15]Hulscher, S. (1996) Formation and Migration of Large-Scale, Rhythmic Sea-Bed Patterns: A Stability Approach, Ph.D. thesis, Utrecht University.Google Scholar
[16]Konno, A. & Izumiyama, K. (2002) On the relationship of the oil/water interfacial tension and the spread of oil slick under ice cover. In: Proceedings of the 17th International Symposium on Okhotsk Sea and Sea Ice, pp. 275282, Hokkaido, Japan.Google Scholar
[17]Koster, J. N. (1994) Multilayer fluid dynamics of immiscible fluids. In: Second Microgravity Fluid Physics Conference, pp. 6571, Lewis Research Center, NASA.Google Scholar
[18]Marche, F. (2005) Theoretical and Numerical Study of Shallow Water Models. Applications to Nearshore Hydrodynamics. Ph. D. Thesis, University of Bordeaux.Google Scholar
[19]Marusic-Paloka, E. & Starcevic, M. (2009) Derivation of Reynolds equation for gas lubrication via asymptotic analysis of the compressible Navier–Stokes system. Nonlinear Anal.: Real World Appl. 11, 45654571.Google Scholar
[20]Narbona-Reina, G., Zabsonré, J. D. D., Fernández-Nieto, E. D. & Bresch, D. (2009) Derivation of a bi-layer Shallow-Water model with viscosity. Numerical validation. Comput. Model. Eng. Sci. 43 (1), 2771.Google Scholar
[21]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long scale evolution of thin films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
[22]Parés, C. & Castro, M. J. (2004) On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM-Math. Model. Num. 38 (5), 821852.Google Scholar
[23]Peybernes, M. (2006) Analyse de problème mathématiques de la mécanique des fluides de type bi-couche et à frontière libre. Ph.D. thesis, University of Pascal Paoli.Google Scholar
[24]Reynolds, O. (1886) On the theory of lubrication and its application to Mr. Beauchamp Tower's experiment. Phil. Trans. R. Soc. London Part I, 52, 228310.Google Scholar
[25]Roos, P. C. (2004) Seabed Pattern Dynamics and Offshore Sand Extraction, Ph.D. thesis, University of Twente.Google Scholar
[26]Santra, B., Dandapat, B. S. & Andersson, H. I. (2007) Axisymmetric stagnation-point flow over a lubricated surface. Acta Mech. 194 (1–4), 110.Google Scholar
[27]Schuttelaars, H. (1997) Evolution and Stability Analysis of Bottom Patterns in Tidal Embayment, Ph.D. thesis, Utrecht University.Google Scholar
[28]Shukla, J. B., Kumar, S. & Chandra, P. (1980) Generalized Reynolds equation with slip at bearing surfaces: Multiple-layer lubrication theory. Wear 60, 253268.Google Scholar
[29]Stone, H. A. & Bush, J. W. M. (1996) Time-dependent drop deformation in a rotation high viscosity fluid. Q. App. Math. 54 (3), 551556.CrossRefGoogle Scholar
[30]Wannier, G. H. (1950) A Contribution to the hydrodynamics of lubrication. Q. Appl. Math. 88, 132.Google Scholar
[31]Wilkes, J. (2006) Fluid Mechanics for Chemical Engineers with Microfluidics and CFD. Indiana, IN: Prentice Hall.Google Scholar
[32]Yeckel, A., Strong, L. & Middleman, S. (1994) Viscous film flow in the stagnation region of the jet impinging on planar surface. AIChE J. 40, 16111617.Google Scholar
[33]Zabsonré, J. D. D. (2008) Modèles Visqueux en Sédimentation et Stratification: Obtention Formelle, Stabilité Théorique et Schémas Volumes Finis Bien Équilibrés. Ph.D. thesis, University of Savoie.Google Scholar
[34]Zabsonré, J. D. D. & Narbona-Reina, G. (2009) Existence of a global weak solution for a 2D viscous bi-layer shallow water model. Nonlinear Anal.: Real World Appl. 10, 29712984.Google Scholar