Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T02:43:05.688Z Has data issue: false hasContentIssue false

Existence and uniqueness of a thermoelastic problem with variable parameters

Published online by Cambridge University Press:  04 May 2015

P. BARRAL
Affiliation:
Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain email: [email protected], [email protected]
M. C. NAYA-RIVEIRO
Affiliation:
Department of Pedagogy and Didactics, Faculty of Educational Studies, Universidade da Coruña, 15071 A Coruña, Spain email: [email protected]
P. QUINTELA
Affiliation:
Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain email: [email protected], [email protected]

Abstract

The aim of this article is to study the existence and uniqueness of solution for a quasistatic fully coupled thermoelastic problem arising from some metallurgical processes. We consider mixed boundary conditions for both submodels, and a Robin boundary condition for the thermal one. Furthermore, the reference temperature, the thermal conductivity and the Lamé's parameters are assumed to depend on the material point.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ames, K. A. & Payne, L. E. (1994) Uniqueness and continuous dependence of solutions to a multidimensional thermoelastic contact problem. J. Elast. 34, 139148.CrossRefGoogle Scholar
[2]Barral, P., Naya-Riveiro, M. C. & Quintela, P. (2007) Mathematical analysis of a viscoelastic problem with temperature-dependent coefficients. Part I: Existence and uniqueness. Math. Methods Appl. Sci. 30 (13), 15451568.CrossRefGoogle Scholar
[3]Barral, P., Naya-Riveiro, M. C. & Quintela, P. (2007) Mathematical analysis of a viscoelastic problem with temperature-dependent coefficients. Part II: Regularity. Math. Meth. Appl. Sci. 30 (13), 15691592.CrossRefGoogle Scholar
[4]Barral, P. & Quintela, P. (1999) A numerical method for simulation of thermal stresses during casting of aluminium slabs. Comput. Methods Appl. Mech. Eng. 178 (1–2), 6988.CrossRefGoogle Scholar
[5]Bermúdez, A., Muñiz, M. C. & Quintela, P. (1993) Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminum electrolytic cell. Comput. Methods Appl. Mech. Eng. 106 (1–2), 129142.CrossRefGoogle Scholar
[6]Boley, B. A. & Weiner, J. H. (1960) Theory of Thermal Stresses, John Wiley & Sons Inc., New York.Google Scholar
[7]Brezis, H. (1983) Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maî trise, Masson, Paris.Google Scholar
[8]Carlson, D. E. (1972) Linear Thermoelasticity, Handbuch der Physik (Encyclopedia of Physics, Mechanics of Solids II), Vol. VIA/2, Springer, Berlin, pp. 297345.Google Scholar
[9]Copetti, M. I. M. & Elliott, C. M. (1993) A one-dimensional quasi-static contact problem in linear thermoelasticity. Eur. J. Appl. Math. 4 (2), 151174.CrossRefGoogle Scholar
[10]Dafermos, C. M. (1968) On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241271.CrossRefGoogle Scholar
[11]Day, W. A. (1985) Heat Conduction within Linear Thermoelasticity, Springer-Verlag, New York–Berlin.CrossRefGoogle Scholar
[12]Duhamel, J. M. C. (1837) Second mémoire sur les phénomènes thermomécaniques. J. de l'École Polyt. 15, 157.Google Scholar
[13]Duvaut, G. & Lions, J. L. (1969) Nouvelles inéquations variationnelles rencontrées en thermique et en thermoélasticité. C. R. Acad. Sci. Paris Sér. A-B 269, A1198A1201.Google Scholar
[14]Duvaut, G. & Lions, J. L. (1969) Sur de nouveaux problèmes d'inéquations variationnelles posés par la Mécanique. Le cas d'évolution. C. R. Acad. Sci. Paris Sér. A-B 269, A570–A572.Google Scholar
[15]Duvaut, G. & Lions, J. L. (1972) Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241279.CrossRefGoogle Scholar
[16]Duvaut, G. & Lions, J. L. (1972) Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, Vol. 21, Dunod, Paris.Google Scholar
[17]Figueiredo, I. & Trabucho, L. (1995) A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity. Int. J. Eng. Sci. 33 (1), 4566.CrossRefGoogle Scholar
[18]Figueiredo, I. & Trabucho, L. (1995) Some existence results for contact and friction problems in thermoelasticity and in thermoviscoelasticity. In: Asymptotic Methods for Elastic Structures (Lisbon, 1993), Gruyter, Berlin, pp. 223235.Google Scholar
[19]Flint, G., Usmani, A., Lamont, S., Torero, J. & Lane, B. (2006) Effect of fire on composite long span truss floor systems. J. Constr. Steel. Res. 62, 303315.CrossRefGoogle Scholar
[20]Gawinecki, J. (1981) Uniqueness and regularity of the solution of the first boundary-initial value problem for thermal stresses equations of classical and generalized thermomechanics. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 29 (11–12), 231238.Google Scholar
[21]Gawinecki, J. (1982) Existence and uniqueness of the solution of the third boundary-initial value problem for thermal stresses equations of classical and generalized thermomechanics. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 30 (3–4), 155163.Google Scholar
[22]Gawinecki, J. (1983) Existence, uniqueness and regularity of the first boundary-initial value problem for thermal stresses equations of classical and generalized thermomechanics. J. Tech. Phys. 24 (4), 467479.Google Scholar
[23]Gawinecki, J. (1986) Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equations of linear thermomicroelasticity. Bull. Pol. Acad. Sci. Tech. Sci. 34 (7–8), 447460.Google Scholar
[24]Gawinecki, J. (1987) Existence, uniqueness and regularity of the first boundary-initial value problem for hyperbolic equations system of the thermal stresses theory for temperature-rate-dependent solids. Bull. Pol. Acad. Sci. Tech. Sci. 35 (7–8), 411419.Google Scholar
[25]Gawinecki, J. (1987) The Faedo–Galerkin method in thermal stresses theory. Comment. Math. Prace Mat. 27 (1), 83107.Google Scholar
[26]Gawinecki, J., Kowalski, T. & Litewska, K. (1982) Existence and uniqueness of the solution of the mixed boundary-initial value problem in linear thermoelasticity. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 30 (11–12), 173178.Google Scholar
[27]Ieşan, D. (1989) On some theorems in thermoelastodynamics. Rev. Roum. Sci. Tech. Sér. Méc. Appl. 34 (2), 101111.Google Scholar
[28]Ionescu-Cazimir, V. (1964) Problem of linear coupled thermoelasticity. III. Uniqueness theorem. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 12 (12), 565573.Google Scholar
[29]Jiang, S. & Racke, R. (2000) Evolution Equations in Thermoelasticity. Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
[30]Knops, R. & Payne, L. (1970) On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity. Int. J. Solids Struct. 6 (8), 11731184.CrossRefGoogle Scholar
[31]Martins, J. A. C. & Oden, J. T. (1987) Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal.-Theory Methods Appl. 11 (3), 407428.CrossRefGoogle Scholar
[32]Muñoz Rivera, J. E. & Racke, R. (1998) Multidimensional contact problems in thermoelasticity. SIAM J. Appl. Math. 58 (4), 13071337.CrossRefGoogle Scholar
[33]Naya-Riveiro, M. C. & Quintela, P. (2008) Modelling of materials with long memory. Int. J. Solids Struct. 45 (24), 61336156.CrossRefGoogle Scholar
[34]Shi, P. & Shillor., M. (1992) Existence of a solution to the N-dimensional problem of thermoelastic contact. Commun. Partial Differ. Equ. 17 (9–10), 15971618.Google Scholar
[35]Viaño Rey, J. M. (1981) Existencia y aproximación de soluciones en termoelasticidad y elastoplasticidad. Phd thesis, Department of Applied Mathematics, Universidade de Santiago de Compostela.Google Scholar
[36]Weiner, J. (1957) A uniqueness theorem for the coupled thermoelastic problem. Q. Appl. Math. 15, 102105.CrossRefGoogle Scholar