Article contents
Estimates of blow-up time for a non-local problem modelling an Ohmic heating process
Published online by Cambridge University Press: 16 July 2002
Abstract
We consider an initial boundary value problem for the non-local equation, ut = uxx+λf(u)/(∫1-1f (u)dx)2, with Robin boundary conditions. It is known that there exists a critical value of the parameter λ, say λ*, such that for λ > λ* there is no stationary solution and the solution u(x, t) blows up globally in finite time t*, while for λ < λ* there exist stationary solutions. We find, for decreasing f and for λ > λ*, upper and lower bounds for t*, by using comparison methods. For f(u) = e−u, we give an asymptotic estimate: t* ∼ tu(λ−λ*)−1/2 for 0 < (λ−λ*) [Lt ] 1, where tu is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme.
- Type
- Research Article
- Information
- Copyright
- 2002 Cambridge University Press
- 7
- Cited by