Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T20:57:01.275Z Has data issue: false hasContentIssue false

The degenerate and non-degenerate Stefan problem with inhomogeneous and anisotropic Gibbs–Thomson law

Published online by Cambridge University Press:  30 March 2011

CHRISTIANE KRAUS*
Affiliation:
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany email: [email protected]

Abstract

The Stefan problem is coupled with a spatially inhomogeneous and anisotropic Gibbs–Thomson condition at the phase boundary. We show the long-time existence of weak solutions for the non-degenerate Stefan problem with a spatially inhomogeneous and anisotropic Gibbs–Thomson law and a conditional existence result for the corresponding degenerate Stefan problem. To this end, approximate solutions are constructed by means of variational problems for energy functionals with spatially inhomogeneous and anisotropic interfacial energy. By passing to the limit, we establish solutions of the Stefan problem with a spatially inhomogeneous and anisotropic Gibbs–Thomson law in a weak generalised BV-formulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amar, M. & Bellettini, G. (1994) A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri. Poincaré, Analyse Non-Linéaire 11, 91133.CrossRefGoogle Scholar
[2]Amar, M. & Bellettini, G. (1995) Approximation by Γ-convergence of a total variation with discontinuous coefficients. Asymptotic Anal. 10 (3), 225243.CrossRefGoogle Scholar
[3]Ambrosio, L., Fusco, N. & Pallara, D. (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon Press, Oxford, 434 pp.CrossRefGoogle Scholar
[4]Almgren, F., Taylor, J. E. & Wang, L. (1993) Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31 (2), 387438.CrossRefGoogle Scholar
[5]Bronsard, L., Garcke, H. & Stoth, B. (1998) A multi-phase Mullins–Sekerka system: Matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem. Proc. R. Soc. Edinburg, Sect. A, Math. 128 (3), 481506.CrossRefGoogle Scholar
[6]Bellettini, G. & Paolini, P. (1996) Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (3), 537566.CrossRefGoogle Scholar
[7]Chen, X. (1996) Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44 (2), 262311.CrossRefGoogle Scholar
[8]Chen, X., Hong, J. & Yi, F. (1996) Existence, uniqueness, and regularity of classical solutions of the Mullins–Sekerka problem. Commun. Partial Differ. Equ. 21 (11–12), 17051727.Google Scholar
[9]Dziuk, G. (1999) Discrete anisotropic curve shortening flow. SIAM Numer. Anal. 36 (6), 199227.CrossRefGoogle Scholar
[10]Escher, J., Prüss, J. & Simonett, G. (2003) Analytic solutions for a Stefan problem with Gibbs–Thomson correction. J. Reine Angew. Math 563 (5), 152.CrossRefGoogle Scholar
[11]Escher, J. & Simonett, G. (1997a) Classical solutions for the Hele–Shaw models with surface tension. Adv. Differ. Equ. 2 (4), 619647.Google Scholar
[12]Escher, J. & Simonett, G. (1997b) Classical solutions of multidimensional Hele–Shaw models. SIAM J. Math. Anal. 28 (5), 10281047.CrossRefGoogle Scholar
[13]Evans, L. C. (1990) Weak Convergence Methods for Nonlinear Partial Differential Equations, Conference Board of the Mathematical Sciences (Regional Conference Series in Mathematics), American Mathematical Society, Loyala University of Chiago, 80 pp.CrossRefGoogle Scholar
[14]Fonseca, I. (1991) The Wulff theorem revisited. Proc. R. Soc. London, Ser. A 432 (1884), 125145.Google Scholar
[15]Fonseca, I. (1992) Lower semicontinuity of surface energies. Proc. R. Soc. Edinburg, Sect. A 120 (1–2), 99115.CrossRefGoogle Scholar
[16]Giga, Y. (2006) Surface Evolution Equations, A Level Set Approach, Vol. 99: Monographs in Mathematics. Birkhäuser, Basel, 264 pp.Google Scholar
[17]Giusti, E. (1984) Minimal Surfaces and Functions of Bounded Variation, Vol. 80: Monographs in Mathematics, Birkhäuser, Boston, 240 pp.CrossRefGoogle Scholar
[18]Garcke, H. & Kraus, C. (2009) An anisotropic, inhomogeneous, elastically modified Gibbs–Thomson law as singular limit of a diffuse interface model. WIAS Preprint 1467. To appear in Adv. Math. Sci. Appl. (2010).Google Scholar
[19]Garcke, H. & Sturzenhecker, T. (1998) The degenerate multi-phase Stefan problem with Gibbs–Thomson law. Adv. Math. Sci. Appl. 8 (2), 929941.Google Scholar
[19a]Garcke, H. & Schaubeck, S. (2011) Existence of weak solutions for the Stefan problem with anisotropic Gibbs–Thomson law. Regensburg Preprint (http://www.uni-regensburg.de/Fakultaeten/nat_Fak_1/Mat8/homepage/publicatlist.html)Google Scholar
[20]Gupta, S. C. (2003) The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Vol. 3: North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, xvii, 385 pp.Google Scholar
[21]Gurtin, M. E. (1988) Multiphase thermomechanics with interfacial structure. I: Heat conduction and the capillary balance law. Arch. Ration. Mech. Anal. 104 (3), 195221.CrossRefGoogle Scholar
[22]Gurtin, M. E. (1993) Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, Oxford, 148 pp.CrossRefGoogle Scholar
[23]Kneisel, C. (2007) Über das Stefan-Problem mit Oberflächenspannung und thermischer Unterkühkung. PhD Thesis, Kassel. http://deposit.ddb.de/cgi-bin/dokseiv?idn=98645222x&dok_var=d1&dok_ext=pdf&filename=98645222x.pdfGoogle Scholar
[24]Luckhaus, S. & Sturzenhecker, T. (1995) Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3 (2), 253271.CrossRefGoogle Scholar
[25]Luckhaus, S. (1990) Solutions for the two-phase Stefan problem with the Gibbs–Thomson law for the melting temperature. Eur. J. Appl. Math. 1 (2), 101111.CrossRefGoogle Scholar
[26]Luckhaus, S. (1991) The Stefan problem with Gibbs–Thomson law. Sezione di Analisi Matematica e Probabilitita, Universita die Pisa 2.75 (591).Google Scholar
[27]Meirmanov, A. M. (1992) The Stefan Problem. (Translated from the Russian), Vol. 3: De Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin, ix, 245 pp.CrossRefGoogle Scholar
[28]Otto, F. (1998) Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Ration. Mech. Anal. 141 (1), 63103.CrossRefGoogle Scholar
[29]Röger, M. (2004) Solutions for the Stefan problem with Gibbs–Thomson law by a local minimisation. Interfaces Free Bound. 6 (1), 105133.CrossRefGoogle Scholar
[30]Röger, M. (2005) Existence of weak solutions for the Mullins–Sekerka flow. SIAM J. Math. Anal. 37 (1), 291301.CrossRefGoogle Scholar
[31]Simon, J. (1978) Ecoulement d'un fluide non homogene avec une densite initiale s'annulant. C. R. Acad. Sci. Paris 287, 10091012.Google Scholar
[32]Simon, J. (1987) Compact sets in the space L p (0,T;B). Ann. Mat. Pura Appl., Ser. 4 146, 6596.CrossRefGoogle Scholar
[33]Visintin, A. (1998) Models of phase transitions. In: Progress in Nonlinear Differential Equation and their Applications, Birkhäuser, Boston, 322 pp.Google Scholar