Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T23:37:54.081Z Has data issue: false hasContentIssue false

The convective viscous Cahn–Hilliard equation: Exact solutions

Published online by Cambridge University Press:  30 June 2015

P. O. MCHEDLOV-PETROSYAN*
Affiliation:
A.I.Akhiezer Institute for Theoretical Physics, National Science Center “Kharkov Institite of Physics & Technology”, 1, Akademicheskaya Str., Kharkov, Ukraine61108 email: [email protected]

Abstract

In this paper, we give exact solutions for the convective viscous Cahn--Hilliard equation. This equation with a general symmetric double-well potential and Burgers-type convective term was introduced by T. P. Witelski (1996 Studies in Applied Mathematics96, 277–300) to study the joint effects of nonlinear convection and viscosity. We consider this equation with a polynomial, generally asymmetric potential. We also consider both Burgers-type and cubic convective terms. We obtained exact travelling-wave solutions for both cases. For the former case, with an additional constraint on nonlinearity and viscosity, we also obtained an exact two-wave solution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bai, F., Elliott, C. M., Gardiner, A., Spence, A. & Stuart, A. M. (1995) The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity 8, 131160.CrossRefGoogle Scholar
[2] Benjamin, T. B., Bona, J. L. & Mahony, J. J. (1972) Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. London. Series A, Math. Phys. Sci. 272(1220), 4778.Google Scholar
[3] Bonfoh, A. (2011) The viscous Cahn-Hilliard equation with inertial term. Nonlinear Anal. 74, 946964.CrossRefGoogle Scholar
[4] Caginalp, G. & Chen, X. (1998) Convergence of the phase field model to its sharp interface limits. Europ. J. Appl. Math. 9, 417445.CrossRefGoogle Scholar
[5] Cahn, J. W. & Hilliard, J. E. (1958) Free energy of nonuniform systems. I. Interfacial free energy. J. Chem. Phys. 28, 258.CrossRefGoogle Scholar
[6] Cross, M. C. & Hohenberg, P. C. (1993) Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
[7] De Groot, S. R. & Mazur, P. (1984). Non-Equilibrium Thermodynamics, Dover Pubns, New York.Google Scholar
[8] Emmott, C. L. & Bray, A. J. (1996) Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system, Phys. Rev. E 54 (5), 45684575.Google Scholar
[9] Fife, P. C. (2000) Models for phase separation and their mathematics. Electron. J. Differ. Equ. 2000 (48), 126.Google Scholar
[10] Fort, J. & Mendez, V. (2002) Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment. Rep. Progr. Phys. 65, 895954.Google Scholar
[11] Galenko, P. (2001) Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys. Lett. A 287, 190197.Google Scholar
[12] Galenko, P. & Jou, D. (2005) Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E 71, 046125.CrossRefGoogle ScholarPubMed
[13] Galenko, P. & Lebedev, V. (2008) Non-equilibrium effects in spinodal decomposition of a binary system. Phys. Lett. A 372 985989.Google Scholar
[14] Gatti, S., Grasselli, M., Miranville, A. & Pata, V. (2005) On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation. J. Math. Anal. Appl. 312, 230247.CrossRefGoogle Scholar
[15] Gatti, S., Grasselli, M., Miranville, A. & Pata, V. (2005) Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D. Math. Models Methods Appl. Sci. 15, 165198.CrossRefGoogle Scholar
[16] Gelens, L. & Knobloch, E. (2010) Coarsening and frozen faceted structures in the supercritical complex Swift-Hohenberg equation. Eur. Phys. J. D 59 (1), 2326.CrossRefGoogle Scholar
[17] Gelens, L. & Knobloch, E. (2011) Traveling waves and defects in the complex Swift-Hohenberg equation. Phys. Rev. E 84, 056203.CrossRefGoogle ScholarPubMed
[18] Golovin, A. A., Davis, S. H. & Nepomnyashchy, A. A. (1998) A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth. Physica D 118, 202230.Google Scholar
[19] Golovin, A. A., Davis, S. H. & Nepomnyashchy, A. A. (1999) Modeling the formation of facets and corners using a convective Cahn-Hilliard model. J. Cryst. Growth 198/199, 12451250.Google Scholar
[20] Golovin, A. A., Nepomnyashchy, A. A., Davis, S. H. & Zaks, M. A. (2001) Convective Cahn-Hilliard models: From coarsening to roughening. Phys. Rev. Lett. 86, 15501553.Google Scholar
[21] Grasselli, M., Petzeltova, H. & Schimperna, G. (2007) Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term. J. Differ. Equ. 239, 3860.Google Scholar
[22] Hirota, R. (1980) Direct methods in soliton theory. In: Bullough, R. K. and Caudrey, P. J. (editors), Solitons, Springer, Berlin.Google Scholar
[23] Kuramoto, Y. & Tsuzuki, T. (1976) Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progr. Theoret. Phys. 55, 356369.Google Scholar
[24] Leung, K. (1990) Theory on morphological instability in driven systems. J. Stat. Phys. 61 (1/2), 345364.CrossRefGoogle Scholar
[25] Lifshitz, I. M. & Slyozov, V. V. (1961) The kinetic of precipitation from supersaturated solid solution. J. Phys. Chem. Solids 19, 3550.Google Scholar
[26] Mchedlov-Petrosyan, P. O. & Davydov, L. N. (2015) Travelling wave solutions for the Penrose-Fife phase field model, submitted.Google Scholar
[27] Mchedlov-Petrosyan, P. O. & Kopiychenko, D. (2013) Exact solutions for some modifications of the nonlinear Cahn-Hilliard equation. Rep. Natl. Acad. Sci. Ukraine (12), 8893.Google Scholar
[28] Novick-Cohen, A. (1988) On the viscous Cahn-Hilliard equation. In: Ball, J. M. (editor), Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Oxford University Press, Oxford, pp. 329342.Google Scholar
[29] Novick-Cohen, A. (2008) The Cahn-Hilliard equation. In: Dafermos, C. M. and Feireisl, E. (editors), Handbook of Differential Equations, Evolutionary Equations, Vol. 4, Elsevier B.V. Google Scholar
[30] Novick-Cohen, A. & Segel, L. A. (1984) Nonlinear aspects of the Cahn-Hilliard equation. Physica D 10, 277298.CrossRefGoogle Scholar
[31] Peletier, L. A. & Troy, W. C. (2001) Spatial patterns: Higher order models in physics and mechanics. Progress in Nonlinear Differential Equations and Their Applications, Vol. 45, Birkhauser, Boston.Google Scholar
[32] Penrose, O. & Fife, P. (1990) Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43, 4462.Google Scholar
[33] Penrose, O. & Fife, P. (1993) On the relation between the standard phase-field model and a “thermodynamically consistent'' phase-field model. Physica D 69, 107113.Google Scholar
[34] Podolny, A., Zaks, M. A., Rubinstein, B. Y., Golovin, A. A. & Nepomnyashchy, A. A. (2005) Dynamics of domain walls governed by the convective Cahn-Hilliard equation. Physica D 201, 291305.Google Scholar
[35] Sivashinsky, G. (1977) Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations. Acta Astron. 4, 11771206.CrossRefGoogle Scholar
[36] Van der Waals, J. D. (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. (1893). Translated by J. S. Rowlinson. J. Stat. Phys. 20, 197244.Google Scholar
[37] Watson, S. J., Otto, F., Rubinstein, B. Y. & Davis, S. H. (2002) Coarsening dynamics for the convective Cahn-Hilliard equation, Max-Plank-Institut für Mathematik in den Naturwissenschaften, Leipzig, Preprint no. 35.Google Scholar
[38] Watson, S. J., Otto, F., Rubinstein, B. Y. & Davis, S. H. (2003) Coarsening dynamics of the convective Cahn-Hilliard equation. Physica D 178 127148.Google Scholar
[39] Witelski, T. P. (1995) Shocks in nonlinear diffusion. Appl. Math. Lett. 8 (8), 2732.CrossRefGoogle Scholar
[40] Witelski, T. P. (1996) The structure of internal layers for unstable nonlinear diffusion equations. Stud. Appl. Math. 96, 277300.Google Scholar
[41] Xiaopeng, Z. & Bo, L. (2012) The existence of global attractor for convective Cahn-Hilliard equation. J. Korean Math. Soc. 49 (2), 357378.Google Scholar