Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T20:07:23.909Z Has data issue: false hasContentIssue false

Asymptotic spreading of competition diffusion systems: The role of interspecific competitions

Published online by Cambridge University Press:  09 August 2012

GUO LIN
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China email: [email protected], [email protected]
WAN-TONG LI
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China email: [email protected], [email protected]

Abstract

This paper is concerned with the asymptotic spreading of competition diffusion systems, with the purpose of formulating the propagation modes of a co-invasion–coexistence process of two competitors. Using the comparison principle for competitive systems, some results on asymptotic spreading are obtained. Our conclusions imply that the interspecific competitions slow the invasion of one species and decrease the population densities in the coexistence domain. Therefore, the interspecific competitions play a negative role in the evolution of competitive communities.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ahmad, S., Lazer, A. C. & Tineo, A. (2008) Traveling waves for a system of equations. Nonlinear Anal. 68 (12), 39093912.CrossRefGoogle Scholar
[2]Aronson, D. G. (1977) The asymptotic speed of propagation of a simple epidemic. In: Fitzgibbon, W.E. & Walker, H. F. (editors), Nonlinear Diffusion, Pitman, London, pp. 123.Google Scholar
[3]Aronson, D. G. & Weinberger, H. F. (1975) Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. A. (editor), Partial Differential Equations and Related Topics), Lecture Notes in Mathematics, Vol. 446, Springer, Berlin, Germany, pp. 549.Google Scholar
[4]Aronson, D. G. & Weinberger, H. F. (1978) Multidimensional nonlinear diffusion arising in population dynamics. Adv. Math. 30 (1), 3376.Google Scholar
[5]Bengtsson, J. (1989) Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713715.Google Scholar
[6]Bleasdale, J. K. A. (1956) Interspecific competition in higher plants. Nature 178, 150151.Google Scholar
[7]Chesson, P. (2000) General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211237.Google Scholar
[8]Conley, C. & Gardner, R. (1984) An application of the generalized Morse index to travelling wave solutions of a competitive reaction diffusion model. Indiana Univ. Math. J. 33 (3), 319343.Google Scholar
[9]Davis, M. B. (1981) Quaternary history and stability of forest communities. In: West, D.C., Shugart, H. H. & Botkin, D. B. (editors), Forest Succession: Concepts and Applications, Springer-Verlag, New York, pp. 132153.Google Scholar
[10]Diekmann, O. (1979) Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differ. Equ. 33 (1), 5873.CrossRefGoogle Scholar
[11]Fife, P. C. & Tang, M. (1981) Comparison principles for reaction–diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances. J. Differ. Equ. 40 (2), 168185.Google Scholar
[12]Fusco, G., Hale, J. K. & Xun, J. (1996) Traveling waves as limits of solutions on bounded domain. SIAM J. Math. Anal. 27 (6), 15441558.CrossRefGoogle Scholar
[13]Gardner, S. A. (1982) Existence and stability of traveling wave solutions of competition model: A degree theoretical approach. J. Differ. Equ. 44 (3), 343364.Google Scholar
[14]Gilpin, M. & Ayala, F. (1973) Global models of growth and competition. Proc. Nat. Acad. Sci. USA 70, 35903593.Google Scholar
[15]Goel, N. S., Maitra, S. C. & Montrol, E. W. (1971) On the Volterra and other nonlinear models of interacting populations. Revs. Mod. Phys. 43, 231276.CrossRefGoogle Scholar
[16]Hardin, G. (1960) The competitive exclusion principle. Science 131, 12921297.Google Scholar
[17]Hosono, Y. (1995) Travelling waves for a diffusive Lotka-Volterra competition model II. A geometric approach. Forma 10 (3), 235257.Google Scholar
[18]Hosono, Y. (2003) Traveling waves for a diffusive Lotka-Volterra competition model I. Singular perturbations. Discrete Contin. Dyn. Syst. Ser. B 3 (1), 7995.Google Scholar
[19]Huang, W. & Han, M. (2011) Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model. J. Differ. Equ. 251 (6), 15491561.Google Scholar
[20]Huston, M. A. & DeAngelis, D. L. (1994) Competition and coexistence: The effects of resource transport and supply rates. Am. Nat. 144, 954977.Google Scholar
[21]Kanel, J. I. & Zhou, L. (1996) Existence of wave front solutions and estimates of wave speed for a competition-diffusion system. Nonlinear Anal. 27 (5), 579587.Google Scholar
[22]Kan-on, Y. (1995) Parameter dependence of propagation speed of traveling waves for competition-diffusion equations. SIAM J. Math. Anal. 26 (2), 340363.Google Scholar
[23]Kan-on, Y. & Fang, Q. (1996) Stability of monotone travelling waves for competition-diffusion equations. Japan J. Indust. Appl. Math. 13 (2), 343349.Google Scholar
[24]Lewis, M. A., Li, B. & Weinberger, H. F. (2002) Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45 (3), 219233.Google Scholar
[25]Li, W.-T., Lin, G. & Ruan, S. (2006) Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion-competition systems. Nonlinearity 19 (6), 12531273.Google Scholar
[26]Liang, X. & Zhao, X. (2007) Asymptotic speeds of spread and traveling waves for monotone semi-flows with applications. Comm. Pure Appl. Math. 60 (1), 140.Google Scholar
[27]Lin, G., Li, W.-T. & Ma, M. (2010) Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete Contin. Dyn. Syst. Ser. B 13 (3), 393414.Google Scholar
[28]Lin, G., Li, W.-T. & Ruan, S. (2011) Spreading speeds and traveling waves in competitive recursion systems. J. Math. Biol. 62 (2), 165201.Google Scholar
[29]Martin, R.-H. & Smith, H. L. (1990) Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321 (1), 144.Google Scholar
[30]Martin, R. H. & Smith, H. L. (1991) Reaction–diffusion systems with the time delay: Monotonicity, invariance, comparison and convergence. J. Reine. Angew. Math. 413, 135.Google Scholar
[31]May, R. M. (1973) Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ.Google Scholar
[32]Murray, J. D. (1993) Mathematical Biology, Springer, New York, xiv+767 pp.Google Scholar
[33]Okubo, A., Maini, P. K., Williamson, M. H. & Murray, J. D. (1989) On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B 238, 113125.Google Scholar
[34]Pan, S. (2009) Traveling wave solutions in delayed diffusion systems via a cross iteration scheme. Nonlinear Anal. Real World Appl. 10 (5), 28072818.Google Scholar
[35]Pao, C. V. (1992) Nonlinear Parabolic and Elliptic Equations, Plenum, New York, xvi+777 pp.Google Scholar
[36]Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, viii+279 pp.Google Scholar
[37]Ruan, S. & Wu, J. (1994) Reaction-diffusion systems with infinite delay. Canad. Appl. Math. Quart. 2, 485550.Google Scholar
[38]Ruan, S. & Zhao, X. (1999) Persistence and extinction in two species reaction-diffusion systems with delays. J. Differ. Equ. 156 (1), 7192.Google Scholar
[39]Shigesada, N. & Kawasaki, K. (1997) Biological Invasions: Theory and Practice, Oxford University Press, Oxford, UK, xiii+205 pp.Google Scholar
[40]Smith, H. L. (1995) Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, x+174 pp.Google Scholar
[41]Smith, H. L. & Zhao, X. (2000) Global asymptotic stability of travelling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31 (3), 514534.Google Scholar
[42]Smoller, J. (1994) Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York, xxi+581 pp.Google Scholar
[43]Tang, M. M. & Fife, P. (1980) Propagating fronts for competing species equations with diffusion. Arch. Ration. Mech. Anal. 73 (1), 6977.Google Scholar
[44]Thieme, H. R. & Zhao, X. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J. Differ. Equ. 195 (2), 430470.Google Scholar
[45]Travis, C. C. & Webb, G. F. (1974) Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395418.Google Scholar
[46]Volpert, A. I., Volpert, V. A. & Volpert, V. A. (1994) Traveling Wave Solutions of Parabolic Systems (Translations of Mathematical Monographs, 140), AMS, Providence, RI, xii+448 pp.Google Scholar
[47]Wang, Z.-C., Li, W.-T. & Ruan, S. (2008) Travelling fronts in monostable equations with nonlocal delayed effects. J. Dyn. Differ. Equ. 20 (3), 573603.Google Scholar
[48]Weinberger, H. F., Lewis, M. A. & Li, B. (2002) Analysis of linear determinacy for spread in cooperative models.. J. Math. Biol. 45 (3), 183218.Google Scholar
[49]Wu, J. (1996) Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, x+429 pp.Google Scholar
[50]Ye, Q., Li, Z., Wang, M. & Wu, Y. (2011) Introduction to Reaction Diffusion Equations, Science Press, Beijing, China, xvii+450 pp.Google Scholar