Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T14:55:33.473Z Has data issue: false hasContentIssue false

Asymptotic results for nonlinear outdiffusion

Published online by Cambridge University Press:  26 September 2008

J.R. King
Affiliation:
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

Asymptotic methods are applied to the outdiffusion of a diffusant whose behaviour is governed by a power-law diffusivity. Both semi-infinite and finite domain problems are considered. The ‘fast’ diffusion (negative power-law) case is of particular interest, and the results are significantly different from those for the corresponding indiffusion problem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, G., Hirose, A. & Lonngren, K. E. 1976 Field penetration into a plasma with current saturating conductivity. IEEE Trans. Plasma Sci. PS-4, 255256.CrossRefGoogle Scholar
Aronson, D. G. & Peletier, L. A. 1981 Large time behaviour of solutions of the porous medium equation in bounded domains. J. Diff. Equations 39, 378412.CrossRefGoogle Scholar
Berryman, J. G. 1977 Evolution of a stable class of nonlinear diffusion equations with fixed boundaries. J. Math. Phys. 18, 21082115.CrossRefGoogle Scholar
Berryman, J. G. & Holland, C. J. 1980 Stability of the separable solution for fast diffusion. Arch. Rat. Mech. Anal. 74, 379388.CrossRefGoogle Scholar
Berryman, J. G. & Holland, C. J. 1982 Asymptotic behaviour of the nonlinear diffusion equation nt = (n−1 nx)x. J. Math. Phys. 23, 983987.CrossRefGoogle Scholar
Crank, J. 1975 The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford.Google Scholar
Elliott, C. M., Herrero, M. A., King, J. R. & Ockendon, J. R. 1986 The mesa problem: diffusion patterns for . IMA J. Appl. Math. 37, 147154.CrossRefGoogle Scholar
Entov, V. M. & Etingof, P. I. 1991 Bubble contraction in Hele-Shaw cells. Q. J. Mech. Appl. Math. 44, 507535.CrossRefGoogle Scholar
Esteban, J. R., Rodri´Guez, A. & VáZquez, J. L. 1988 A nonlinear heat equation with singular diffusivity. Comm. P.D.E. 13, 9851039.CrossRefGoogle Scholar
Fujita, H. 1952a The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part I. Text Res. J. 22, 757760.Google Scholar
Fujita, H. 1952 b The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part II. Text Res. J. 22, 823827.CrossRefGoogle Scholar
Hagan, P. S. & Brenner, D. 1988 Sorption limits with increasing diffusion coefficients. SIAM J. Appl. Math. 48, 917920.CrossRefGoogle Scholar
King, J. R. 1988 Approximate solutions to a nonlinear diffusion equation. J. Eng. Math. 22, 5372.CrossRefGoogle Scholar
King, J. R. 1990 Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A 23, 36813697.CrossRefGoogle Scholar
King, J. R. 1992a ‘Instantaneous source’ solutions to a singular nonlinear diffusion équation. J. Eng. Math. (to appear).Google Scholar
King, J. R. 1992b Exact polynomial solutions to some nonlinear diffusion equations. Physica D (to appear).Google Scholar
Lacey, A. A. 1984 The form of blow-up for nonlinear parabolic equations. Proc. Roy. Soc. Edin. 98A, 183202.CrossRefGoogle Scholar
Philip, J. R. 1969 Theory of infiltration. Adv. Hydrosci. 5, 215296.CrossRefGoogle Scholar
RodríGuez, A. & VáZquez, J. L. 1990 A well posed problem in singular Fickian diffusion. Arch. Rat. Mech. Anal. 110, 141163.CrossRefGoogle Scholar
Storm, M. L. 1951 Heat conduction in simple metals. j. Appl. Phys. 22, 940951.CrossRefGoogle Scholar
Yu, S., Tan, T. Y. & GöSele, U. 1991a Diffusion mechanism of zinc and beryllium in gallium arsenide. J. Appl. Phys. 69, 35473565.CrossRefGoogle Scholar
Yu, S., Tan, T. Y. & GöSele, U. 1991b Diffusion mechanism of chromium in GaAs. J. Appl. Phys. 70, 48274836.Google Scholar
Zel'Dovich, IA. B. & Barenblatt, G. I. 1958 The asymptotic properties of self-modelling solutions of the non-stationary gas filtration equations. Sov. Phys. Dokl. 3, 4447.Google Scholar