Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T19:49:59.834Z Has data issue: false hasContentIssue false

Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport

Published online by Cambridge University Press:  29 June 2016

HARALD GARCKE
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany email: [email protected], [email protected]
KEI FONG LAM
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany email: [email protected], [email protected]

Abstract

We consider a diffuse interface model for tumour growth consisting of a Cahn–Hilliard equation with source terms coupled to a reaction–diffusion equation. The coupled system of partial differential equations models a tumour growing in the presence of a nutrient species and surrounded by healthy tissue. The model also takes into account transport mechanisms such as chemotaxis and active transport. We establish well-posedness results for the tumour model and a variant with a quasi-static nutrient. It will turn out that the presence of the source terms in the Cahn–Hilliard equation leads to new difficulties when one aims to derive a priori estimates. However, we are able to prove continuous dependence on initial and boundary data for the chemical potential and for the order parameter in strong norms.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alt, H. W. (2006) Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin Heidelberg.Google Scholar
[2] Bosia, S., Conti, M. & Grasselli, M. (2015) On the Cahn–Hilliard–Brinkman system. Commun. Math. Sci. 13 (6), 15411567.Google Scholar
[3] Byrne, H. M. (2003) Modelling avascular tumour growth. In: Preziosi, L. (editor) Cancer Modelling and Simulation, Chapman & Hall/CRC Mathematical and Computational Biology, CRC Press, Boca Raton (Fla.), London, New York.Google Scholar
[4] Colli, P., Gilardi, G. & Hilhorst, D. (2015) On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst. 35 (6), 24232442.Google Scholar
[5] Colli, P., Gilardi, G., Rocca, E. & Sprekels, J. (2015) Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93108.Google Scholar
[6] Colli, P., Gilardi, G., Rocca, E. & Sprekels, J. (2016) Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. To appear in Discrete Contin. Dyn. Syst. Ser. S.Google Scholar
[7] Cristini, V., Li, X., Lowengrub, J. S. & Wise, S. M. (2009) Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723763.Google Scholar
[8] Feng, X. & Wise, S. (2012) Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50 (3), 13201343.CrossRefGoogle Scholar
[9] Frigeri, S., Grasselli, M. & Rocca, E. (2015) On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215243.Google Scholar
[10] Garcke, H. & Lam, K. F. (2016) Analysis of a Cahn–Hilliard system with non zero Dirichlet conditions modelling tumour growth with chemotaxis. arXiv:1604.00287.Google Scholar
[11] Garcke, H., Lam, K. F., Sitka, E. & Styles, V. (2016) A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (6), 10951148.Google Scholar
[12] Hawkins-Daarud, A., van der Zee, K. G. & Oden, J. T. (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 324.Google Scholar
[13] Hilhorst, D., Kampmann, J., Nguyen, T. N. & van der Zee, K. G. (2015) Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25 (6), 10111043.Google Scholar
[14] Jiang, J., Wu, H. & Zheng, S. (2015) Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259 (7), 30323077.Google Scholar
[15] Lee, H., Lowengrub, J. & Goodman, J. (2002) Modeling pinchoff and reconnection in a Hele–Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.Google Scholar
[16] Lee, H., Lowengrub, J. & Goodman, J. (2002) Modeling pinchoff and reconnection in a Hele–Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14 (2), 514545.Google Scholar
[17] Lowengrub, J. S., Titi, E. & Zhao, K. (2013) Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24, 691734.Google Scholar
[18] Royden, H. L. & Fitzpatrick, P. (2010) Real Analysis. Featured Titles for Real Analysis Series, 4th ed., Pearson Prentice Hall, Boston.Google Scholar
[19] Salsa, S., Vegnu, F. M. G., Zaretti, A. & Zunino, P. (2013) A Primer on PDEs. Models, Methods, Simulations, Springer-Verlag, Mailand.Google Scholar
[20] Simon, J. (1986) Compact sets in space Lp (0, T;B). Ann. Mat. Pura Appl. 146 (1), 6596.Google Scholar
[21] Temam, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Vol. 68, Springer, New York.Google Scholar
[22] Wang, X. & Wu, H. (2012) Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78 (4), 217245.Google Scholar
[23] Wang, X. & Zhang, Z. (2013) Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (3), 367384.Google Scholar