Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T19:37:26.921Z Has data issue: false hasContentIssue false

Steady symmetric low-Reynolds-number flow past a film-coated cylinder

Published online by Cambridge University Press:  11 September 2012

L. R. BAND
Affiliation:
Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK email: [email protected] School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK email: [email protected]
J. M. OLIVER
Affiliation:
Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK email: [email protected], [email protected]
S. L. WATERS
Affiliation:
Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK email: [email protected], [email protected]
D. S. RILEY
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK email: [email protected]

Abstract

In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at the interface. Using double asymptotic expansions based on the bulk fluid’s Reynolds number and the aspect ratio of the film thickness to the cylinder’s radius, we derive the leading- and first-order equations governing the steady-state film dynamics, and obtain analytical solutions, in terms of the film thickness, for the bulk flow. We solve the governing film equations, finding that solutions feature a drained region. We briefly discuss the influence of the Capillary number and fluid viscosities, and conclude by showing how the presence of the film affects the drag on the film-coated cylinder.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Band, L. R., Riley, D. S., Matthews, P. C., Oliver, J. M. & Waters, S. L. (2009) Annular thin-film flows driven by azimuthal variations in interfacial tension. Q. J. Mech. Appl. Math. 62, 403430.CrossRefGoogle Scholar
[2]Bentwich, M. & Miloh, T. (1978) The unsteady matched Stokes-Oseen solution for the flow past a sphere. J. Fluid Mech. 88, 1732.CrossRefGoogle Scholar
[3]Bentwich, M. & Miloh, T. (1982) Low Reynolds number flow due to impulsively started circular cylinder. J. Eng. Math. 16, 121.CrossRefGoogle Scholar
[4]Brenner, H. (1964) The Stokes resistance of a slightly deformed sphere. Chem. Eng. Sci. 19, 519539.CrossRefGoogle Scholar
[5]Choudhuri, D. & Padmavati, B. S. (2010) A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity. Z. Angew. Math. Phys. 61, 317328.CrossRefGoogle Scholar
[6]Duffy, B. R. & Wilson, S. K. (1999) Thin-film and curtain flows on the outside of a rotating horizontal cylinder. J. Fluid Mech. 394, 2949.CrossRefGoogle Scholar
[7]Duffy, B. R. & Wilson, S. K. (2009) Large Biot-number non-isothermal flow of a thin film on a stationary or rotating cylinder. Eur. Phys. J. Spec. Top. 166, 147150.CrossRefGoogle Scholar
[8]Evans, P., Schwartz, L. & Roy, R. (2005) Three-dimensional solutions for coating flow on a rotating horizontal cylinder: Theory and experiment. Phys. Fluids 17, 072102.CrossRefGoogle Scholar
[9]Halpern, D. & Grotberg, J. B. (2003) Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube J. Fluid Mech. 492, 251270.CrossRefGoogle Scholar
[10]Hazel, A. L. & Heil, M. (2005) Surface-tension-induced buckling of liquid-lined elastic tubes: A model for pulmonary airway closure. Proc. Roy. Soc. 461, 18471868.CrossRefGoogle Scholar
[11]Hazel, A. L., Heil, M., Waters, S. L. & Oliver, J. M. (2011) On the liquid lining in fluid-conveying curved tubes. J. Fluid Mech. 705, 213233.CrossRefGoogle Scholar
[12]Hinch, E. J. & Kelmanson, M. 2003 On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder. Proc. Roy. Soc. Ser. A 459 11931213.CrossRefGoogle Scholar
[13]Jensen, O. E. (1997) The thin liquid lining of a weakly curved cylindrical tube. J. Fluid Mech. 331, 373403.CrossRefGoogle Scholar
[14]Johnson, R. E. (1988) Steady-state coating flows inside a rotating horizontal cylinder. J. Fluid Mech. 190, 321342.CrossRefGoogle Scholar
[15]Kohr, M., Prakash, J., Sekhar, G. P. R. & Wendland, W. L. (2009) Expansions at small Reynolds numbers for the flow past a porous circular cylinder. Appl. Anal. 88, 10931114.CrossRefGoogle Scholar
[16]Leslie, G. A., Wilson, S. K. & Duffy, B. R. (2011) Non-isothermal flow of a thin film of fluid with temperature-dependent viscosity on a stationary horizontal cylinder. Phys. Fluids 23, 062101.CrossRefGoogle Scholar
[17]Moffatt, H. K. (1964) Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.CrossRefGoogle Scholar
[18]Morris, S. (1982) The effects of a strongly temperature-dependent viscosity on slow flow past a hot sphere. J. Fluid Mech. 124, 126.CrossRefGoogle Scholar
[19]Nakanishi, M., Kida, T. & Nakajima, T. (1997) Asymptotic solutions for two-dimensional low Reynolds number flow around an impulsively started circular cylinder. J. Fluid Mech. 334, 3159.CrossRefGoogle Scholar
[20]Noakes, C. J., King, J. R. & Riley, D. S. 2011 The effect of mass transfer on steady two-dimensional rimming flow. J. Eng. Math. 71, 223236.CrossRefGoogle Scholar
[21]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
[22]Proudman, I. & Pearson, J. R. A. (1957) Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.CrossRefGoogle Scholar
[23]Reisfeld, B. & Bankoff, S. G. (1992) Non-isothermal flow of a liquid film on a horizontal cylinder J. Fluid Mech. 236, 167196.CrossRefGoogle Scholar
[24]Sano, T. (1981) Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.CrossRefGoogle Scholar
[25]Shintani, K., Umemura, A. & Takano, A. (1983) Low-Reynolds number flow past an elliptic cylinder. J. Fluid Mech. 136, 277289.CrossRefGoogle Scholar
[26]Srivastava, A. C. & Srivastava, N. (2005) Flow past a porous sphere at small Reynolds number. Z. Angew. Math. Phys. 56, 821835.CrossRefGoogle Scholar
[27]Taylor, T. D. & Acrivos, A. (1964) On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18, 466476.CrossRefGoogle Scholar
[28]Van Dyke, M. (1964) Perturbation Methods in Fluid Mechanics, Academic Press, New York.Google Scholar
[29]Villegas-Díaz, M., Power, H. & Riley, D. S. (2003) On the stability of rimming flows to two-dimensional disturbances. Fluid Dyn. Res. 33, 141172.CrossRefGoogle Scholar
[30]Villegas-Díaz, M., Power, H. & Riley, D. S. (2005) Analytical and numerical studies of the stability of thin-film rimming flow subject to surface shear. J. Fluid Mech. 541, 317344.CrossRefGoogle Scholar
[31]Weidner, D. E., Schwartz, L. W. & Eres, M. H. (1997) Simulation of coating layer evolution and drop formation on horizontal cylinders. J. Coll. Int. Sci. 187, 243258.CrossRefGoogle ScholarPubMed
[32]White, J. P. & Heil, M. (2005) Three-dimensional instabilities of liquid-lined elastic tubes: A thin-film fluid-structure interaction model. Phys. Fluids 17, 031506.CrossRefGoogle Scholar
[33]Williams, J., Hibberd, S., Power, H. & Riley, D. S. (2012) On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow. Phys. Fluids. 24, 053103.CrossRefGoogle Scholar