Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T11:30:30.775Z Has data issue: false hasContentIssue false

A review of mathematical analysis of nematic and smectic-A liquid crystal models

Published online by Cambridge University Press:  07 October 2013

BLANCA CLIMENT-EZQUERRA
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain emails: [email protected], [email protected]
FRANCISCO GUILLÉN-GONZÁLEZ
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain emails: [email protected], [email protected]

Abstract

We review the mathematical analysis of some uniaxial, liquid crystal phases. Firstly, we state the models for the two different studied phases: nematic and smectic-A liquid crystals. The spatial and temporal profiles of the liquid crystal configurations will be described by means of strongly nonlinear parabolic partial differential systems, which are presented at the same time. Then we will state some results about existence, regularity, time-periodicity and stability of solutions at infinite time for both models. It is our aim to show that, although nematic and smectic-A phases have different physical properties and are modelled by different nonlinear parabolic problems, there exists a common mathematical machinery to rewrite the models and obtain analytical results.

Type
A Survey in Mathematics for Industry
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ball, J. M. & Zarnescu, A. (2011) Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202 (2), 493535.CrossRefGoogle Scholar
[2]Climent-Ezquerra, B. & Guillén-González, F. (2010) Global in time solution and time-periodicty for a smectic-A liquid crystal model. Commun. Pure Appl. Anal. 9 (6), 14731493.CrossRefGoogle Scholar
[3]Climent-Ezquerra, B. & Guillén-González, F. (2012) On a double penalized smectic-A model. Discrete Cont. Dyn. Syst. 32 (12), 41714182.Google Scholar
[4]Climent-Ezquerra, B., Guillén-González, F. & Moreno-Iraberte, M. J. (2009) Regularity and time-periodicity for a nematic liquid crystal model. Nonlinear Anal. Theory Methods Appl. 71, 539549.CrossRefGoogle Scholar
[5]Climent-Ezquerra, B., Guillén-González, F. & Rodríguez-Bellido, M. A. (2010) Stability for nematic liquid crystal with stretching terms. Int. J. Bifurcations Chaos 20 (9), 29372942.CrossRefGoogle Scholar
[6]Climent-Ezquerra, B., Guillén-González, F. & Rojas-Medar, M. A. (2006) Reproductivity for a nematic liquid crystal model. Z. Angew. Math. Phys. 576 (6), 984998.CrossRefGoogle Scholar
[7]Collings, P. J. (2002) Liquid Crystals: Nature's Delicate Phase of Matter, Princeton University Press, Princeton, NJ.Google Scholar
[8]Coutand, D. & Shkoller, S. (2001) Well possedness of the full Ericsen–Leslye model of nematic liquid crystals. C. R. Acad. Sci. Paris I 333, 919924.CrossRefGoogle Scholar
[9]de Gennes, P. G. & Prost, J. (1993) The Physics of Liquid Crystals, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
[10]Du, Q., Li, M. & Liu, C. (2007) Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discrete Contin. Dyn. Syst. B 8 (3), 539556.Google Scholar
[11]Weinan, E. (1997) Nonlinear continuum theory of smectic-A liquid crystals. Arch. Rat. Mech. Anal. 137 (2), 159175.CrossRefGoogle Scholar
[12]Ericksen, J. (1961) Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 2234.Google Scholar
[13]Ericksen, J. (1987) Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381392.Google Scholar
[14]Haraux, A. (1991) Systèmes dynamiques dissipatifs et applications, Mason, Paris, France.Google Scholar
[15]Leslie, F. (1968) Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28, 265283.CrossRefGoogle Scholar
[16]Leslie, F. (1979) Theory of Flow Phenomenon in Liquid Crystal, Vol. 4, Brown, G. (editor), Academic Press, New York, NY, pp. 181.Google Scholar
[17]Lin, F. H. (1989) Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. Comm. Pure Appl. Math. 42, 789814.CrossRefGoogle Scholar
[18]Lin, F. H. & Liu, C. (1995) Non-parabolic dissipative systems modelling the flow of liquid crystals. Comm. Pure Appl. Math. 4, 501537.CrossRefGoogle Scholar
[19]Lin, F. H. & Liu, C. (2000) Existence of solutions for the Ericksen-Leslie system. Arch. Rat. Mech. Anal. 154, 135156.CrossRefGoogle Scholar
[20]Lin, F. H. & Liu, C. (2001) Static and dynamic theories of liquid crystals. J. Partial Differ. Equa. 14 (4), 289330.Google Scholar
[21]Lions, P. L. (1996) Mathematical Topics in Fluids Mechanics, Clarendon Press, Oxford, UK.Google Scholar
[22]Liu, C. (2000) Dynamic theory for incompressible smectic liquid crystals: Existence and regularity. Discrete Cont. Dyn. Syst. 6 (3), 591608.CrossRefGoogle Scholar
[23]Liu, C. & Shen, J. (2003) A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211228.CrossRefGoogle Scholar
[24]Majumdar, A. & Zarnescu, A. (2010) Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196 (1), 227280.CrossRefGoogle Scholar
[25]Paicu, M. & Zarnescu, A. (2012) Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203 (1), 4567.CrossRefGoogle Scholar
[26]Petzeltová, H., Rocca, E. & Schimperna, G.On the long-time behavior of some mathematical models for nematic liquid crystals. Calc. Var. DOI: 10.1007/s00526-012-0496-1.Google Scholar
[27]Segatti, A. & Wu, H. (2010) Finite dimensional reduction and convergence to equilibrium for incompressible smectic-A liquid crystal flows. SIAM J. Math. Anal. 43 (6), 24452481, 2011.CrossRefGoogle Scholar
[28]Stewart, I. W. (2004) The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Intrtoduction, Taylor & Francis, London.Google Scholar
[29]Stewart, I. W. (2007) Dynamic theory for smectic A liquid crystals. Contin. Mech. Therm. 18, 343360.CrossRefGoogle Scholar
[30]Wu, H. (2010) Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid cristal flows. Discrete Contin. Dyn. Syst. 26 (1), 379396.CrossRefGoogle Scholar
[31]Wu, H., Xu, X. & Liu, C. (2012) Asymptotic behavior for a nematic liquid crystal model with different kinematic transpor properties. Calc. Var. Partial Differential Equations 45 (3&4), 319345.CrossRefGoogle Scholar