Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T23:36:09.440Z Has data issue: false hasContentIssue false

Refinements to the study of electrostatic deflections: theory and experiment

Published online by Cambridge University Press:  14 December 2012

N. D. BRUBAKER
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA email: [email protected], [email protected], [email protected], [email protected]
J. I. SIDDIQUE
Affiliation:
Department of Mathematics, Pennsylvania State University, York Campus, 1031 Edgecomb Avenue, York, PA 17403, USA email: [email protected]
E. SABO
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA email: [email protected], [email protected], [email protected], [email protected]
R. DEATON
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA email: [email protected], [email protected], [email protected], [email protected]
J. A. PELESKO
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA email: [email protected], [email protected], [email protected], [email protected]

Abstract

To study electrostatic actuation, researchers commonly use a setup proposed by G. I. Taylor in [Proc. R. Soc. Lond. Ser. A, 306 (1968), pp. 423–434]. It consists of soap film held at a distance h above a rigid plate so that when a voltage difference is applied between the two components, the top film deflects towards the bottom plate. The most striking feature of this system is when the voltage difference exceeds a critical value V*, the electrostatic forces dominate the surface forces and the soap film gets ‘pulled-into’ or collapses onto the bottom plate. This so-called ‘pull-in’ instability is a ubiquitous feature of electrostatic actuation and as a result, has been the subject of many studies. Recently, Siddique et al. [J. Electrostatics, 69 (2011), pp. 1–6] measured the value of V* as a function of the separation distance and found that the standard prediction breaks down as h increases. Here, we continue the work done in [N. D. Brubaker and J. A. Pelesko, European J. Appl. Math., 22 (2011), pp. 455–470] by investigating the cause of this discrepancy. Specifically, we model the effect of gravity on the generalized version of Taylor's model and study whether it provides the proper correction to the predicted value of V*. In doing so, we derive two nonlinear eigenvalue value problems and investigate their solutions sets.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ackerberg, R. C. (1969) On a nonlinear differential equation of electrohydrodynamics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 312, 129140.Google Scholar
[2]Beckham, J. R. (2008) Analysis of Mathematical Models of Electrostatically Deformed Elastic Bodies, dissertation, University of Delaware.Google Scholar
[3]Brubaker, N. D. & Lindsay, A. E. (Preprint) The onset of multivalued solutions of a prescribed mean curvature equation with singular nonlinearity.Google Scholar
[4]Brubaker, N. D. & Pelesko, J. A. (2011) Non-linear effects on canonical MEMS models. Eur. J. Appl. Math. 22, 455470.Google Scholar
[5]Brubaker, N. D. & Pelesko, J. A. (2012) Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity. Nonlinear Anal. 75, 50865102.Google Scholar
[6]Coddington, E. A. & Levinson, N. (1955) Theory of Ordinary Differential Equations, International Series in Pure and Applied Mathematics, McGraw-Hill, New York.Google Scholar
[7]Finn, R. (1986) Equilibrium Capillary Surfaces, no. 284 in Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York.CrossRefGoogle Scholar
[8]Gidas, B., Ni, W.-M. & Nirenberg, L. (1979) Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209243.Google Scholar
[9]Gilbarg, D. & Trudinger, N. S. (1983) Elliptic Partial Differential Equations of Second Order, no. 224 in Grundlehren der mathematischen Wissenschaften, 2nd ed., Springer-Verlag, Berlin.Google Scholar
[10]Guo, Y., Pan, Z. & Ward, M. J. (2005) Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties. SIAM J. Appl. Math. 66, 309338.Google Scholar
[11]Jackson, J. D. (1999) Classical Electrodynamics, 3rd ed., Wiley, New York.Google Scholar
[12]Lindsay, A. E. & Ward, M. J. (2008) Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. Part I: Fold point asymptotics. Methods Appl. Anal. 15, 297326.Google Scholar
[13]Lindsay, A. E. & Ward, M. J. (2011) Asymptotics of some nonlinear eigenvalue problems modelling a MEMS capacitor. Part II: Multiple solutions and singular asymptotics. Eur. J. Appl. Math. 22, 83123.CrossRefGoogle Scholar
[14]Mellet, A. & Vovelle, J. (2010) Existence and regularity of extremal solutions for a mean-curvature equation. J. Differ. Equ. 249, 3775.Google Scholar
[15]Moulton, D. E. & Pelesko, J. A. (2008) Theory and experiment for soap-film bridge in an electric field. J. Colloid Interface Sci. 322, 252262.CrossRefGoogle ScholarPubMed
[16]Pan, H. (2009) One-dimensional prescribed mean curvature equation with exponential nonlinearity. Nonlinear Anal. 70, 9991010.CrossRefGoogle Scholar
[17]Pelesko, J. A. (2001) Electrostatic field approximations and implications for MEMS devices. In: ESA Annual Meeting Proceedings, East Lansing, MI, pp. 126137.Google Scholar
[18]Pelesko, J. A. & Bernstein, D. H. (2003) Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
[19]Pelesko, J. A. & Chen, X. Y. (2003) Electrostatic deflections of circular elastic membranes. J. Electrost. 57, 112.CrossRefGoogle Scholar
[20]Pelesko, J. A. & Driscoll, T. A. (2005) The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models. J. Engrg. Math. 53, 239252.Google Scholar
[21]Protter, M. H. & Weinberger, H. F. (1967) Maximum Principles in Differential Equations, Springer, New York.Google Scholar
[22]Siddique, J. I., Deaton, R., Sabo, E. & Pelesko, J. A. (2011) An experimental investigation of the theory of electrostatic deflections. J. Electrost. 69, 16.CrossRefGoogle Scholar
[23]Taylor, G. I. (1968) The coalescence of closely spaced drops when they are at different electric potentials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 306, 423434.Google Scholar
[24]Van de Velde, E. V. & Ward, M. J. (1991) Criticality in reactors under domain or external temperature perturbations. Proc. Roy. Soc. London Ser. A 434, 341367.Google Scholar