Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T01:46:38.057Z Has data issue: false hasContentIssue false

On the asymptotics of solutions of a class of linear functional-differential equations

Published online by Cambridge University Press:  26 September 2008

G. Derfel
Affiliation:
Department of Mathematics and Computer Sciences, Ben Gurion University, Beer-Sheva 84105, Israel
F. Vogl
Affiliation:
Institut für Analysis, Technische Mathematik und Versicherungsmathematik, Techniche Universität Wien, A-1040 Wien, Austria

Abstract

A sharp estimate of the growth of solutions of the initial value problem for systems of the form

where Cj(t) are matrices with elements of power growth, is found. As a corollary of this result, it follows, for instance, that each solution of the initial value problem satisfies the estimate ‖u(t)‖ ≤ Cexp{γln2(1+|t|)} for some C > 0 and γ > 0.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Mahler, K. (1940). On a special functional equation. J. London Math. Soc. 15, 115123.Google Scholar
[2]Fox, L., Mayers, D. F., Ockendon, J. B. & Tayler, A. B. (1971). On a functional-differential equation. J. Inst. Math. Appl. 8, 271307.Google Scholar
[3]Cooke, K. & Wiener, J. (1984). Distributional and analytic solutions of functional-differential equations. J. Math. Anal. Appl. 98, 111129.Google Scholar
[4]Derfel, G. (1995). Functional-differential equations with compressed arguments and polynomial coefficients. Asymptotics of the solutions. J. Math. Anal. Appl. 193, 671679.Google Scholar
[5]Derfel, G. (1995). Functional-differential and functional equations with rescaling. Operator Theory: Advances and Applications 80, 100111.Google Scholar
[6]Feldstein, A. & Jackiewicz, Z. (1990). Unstable neutral functional-differential equations. Canad. Math. Bull. 33 (4), 428433.Google Scholar
[7]Iserles, A. (1993). On generalized pantograph functional-differential equation. Euro. J. Appl. Math. 4, 138.Google Scholar
[8]Iserles, A. & Liu, Y. On neutral functional-differential equations with proportional delays (preprint). Cambridge 1993, DAMTP 1993/NA3 (to appear in J. Math. Anal. Appl.)Google Scholar
[9]Kato, T. & McLeod, J. B. (1971). The functional-differential equation y′(x) = ayx)+by(x). Bull. Amer. Math. Soc. 77, 891937.Google Scholar
10]Kuang, Y. & Feldstein, A. (1990). Monotonic and oscillatory solutions of linear neutral delay equations with infinite lag. SIAM J. Math. Anal. 21, 16331641.Google Scholar
[11]Liu, Y. Asymptotic behaviour of functional-differential equations with proportional delays. Euro. J. Appl. Math. (to appear).Google Scholar
[12]Morris, G. R., Feldstein, A. & Bowen, A. W. (1972). The Phragmen-Lindelöf principle and a class of functional differential equations. In: Ordinary Differential Equations, Weiss, L. (ed.), Academic Press, New York, 513540.Google Scholar
[13]Ockendon, J. R. & Tayler, A. B. (1971). The dynamics of a current collection system for an electric locomotive. Proc. Roy. Soc. London, Ser. A, 322, 447468.Google Scholar
[14]Valeev, K. G. (1964). Linear differential equations with delays linearly depending on the argument. Sibirsk. Mat. Zh. 5, 290309.Google Scholar
[15]Vogl, F. (1980). Über ein System linearer Funktional-Differentialgleichungen. Z. Angew. Math. Mech. 60 (1), 717.Google Scholar
[16]Wiener, J. (1982). Distributional and entire solutions of linear functional-differential equations Internat. J. Math. Math. Sci. 5, 729736.Google Scholar
[17]de Bruijn, N. G. (1953). The difference-differential equation, F′(x) = eαx+βF(x−1) I, II. Indag. Math. 15, 449464.Google Scholar