Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T19:49:39.941Z Has data issue: false hasContentIssue false

Nilpotent centres via inverse integrating factors

Published online by Cambridge University Press:  23 March 2016

ANTONIO ALGABA
Affiliation:
Dept. Matemáticas, Facultad de Ciencias, University of Huelva, Huelva, Spain emails: [email protected], [email protected]
CRISTÓBAL GARCÍA
Affiliation:
Dept. Matemáticas, Facultad de Ciencias, University of Huelva, Huelva, Spain emails: [email protected], [email protected]
JAUME GINÉ
Affiliation:
Departament de Matemàtica, Escola Politècnica Superior, Universitat de Lleida, Av. Jaume II, 69, 25001, Lleida, Catalonia, Spain email: [email protected]

Abstract

In this paper, we are interested in the nilpotent centre problem of planar analytic monodromic vector fields. It is known that the formal integrability is not enough to characterize such centres. More general objects are considered as the formal inverse integrating factors. However, the existence of a formal inverse integrating factor is not sufficient to describe all the nilpotent centres. For the family studied in this paper, it is enough.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Algaba, A., Checa, I., García, C. & Gamero, E. (2015) On orbital-reversibility for a class of planar dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20 (1), 229239.Google Scholar
[2] Algaba, A., Fuentes, N., García, C. & Reyes, M. (2014) A class of non-integrable systems admitting an inverse integrating factor. J. Math. Anal. Appl. 420 (2), 14391454.CrossRefGoogle Scholar
[3] Algaba, A., Gamero, E. & García, C. (2009) The integrability problem for a class of planar systems. Nonlinearity 22 (2), 395420.Google Scholar
[4] Algaba, A., García, C. & Reyes, M. (2008) The center problem for a family of systems of differential equations having a nilpotent singular point. J. Math. Anal. Appl. 340 (1), 3243.Google Scholar
[5] Algaba, A., García, C. & Reyes, M. (2009) Like-linearizations of vector fields. Bull. Sci. Math. 133 (8), 806816.Google Scholar
[6] Algaba, A., García, C. & Reyes, M. (2012) A note on analytic integrability of planar vector fields. Eur. J. Appl. Math. 23 (5), 555562.Google Scholar
[7] Algaba, A., García, C. & Reyes, M. (2012) Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems. Chaos Solitons Fractals 45 (6), 869878.Google Scholar
[8] Algaba, A., García, C. & Reyes, M. (2014) A new algorithm for determining the monodromy of a planar differential system. Appl. Math. Comput. 237, 419429.Google Scholar
[9] Álvarez, M. J. & Gasull, A. (2005) Monodromy and stability for nilpotent critical points. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (4), 12531265.Google Scholar
[10] Álvarez, M. J. & Gasull, A. (2006) Generating limit cycles from a nilpotent critical points via normal forms. J. Math. Anal. Appl. 318 (1), 271287.CrossRefGoogle Scholar
[11] Andreev, A. F. (1953) Solution of the problem of the center and the focus in one case. (Russian) Akad. Nauk SSSR. Prikl. Mat. Meh. 17, 333338.Google Scholar
[12] Berthier, M. & Moussu, R. (1994) Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier (Grenoble) 44, 465494.Google Scholar
[13] García, I. A. (2016) Formal inverse integrating factors and nilpotent centers. J. Bifur. Chaos Appl. Sci. Engrg. 26 (1), 1650015 (13 pages).Google Scholar
[14] García, I. A., Giacomini, H., Giné, J. & LLibre, J. (2015) Analytic nilpotent centers as limit of nondegenerate centers revisited, preprint.Google Scholar
[15] Gasull, A. & Torregrosa, J. (1998) Centers problem for several differential equations via Cherkas' method. J. Math. Anal. Appl. 228 (2), 322343.Google Scholar
[16] Giacomini, H., Giné, J. & Llibre, J. (2006) The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Differ. Equ. 227 (2), 406426; J. Differ. Equ. 232(2007), 702 (Corrigendum).CrossRefGoogle Scholar
[17] Giné, J. (2006) The nondegenerate center problem and the inverse integrating factor. Bull. Sci. Math. 130 (2), 152161.Google Scholar
[18] Giné, J. & Llibre, J. (2014) A method for characterizing nilpotent centers. J. Math. Anal. Appl. 413 (1), 537545.Google Scholar
[19] Giné, J. & Peralta-Salas, D. (2012) Existence of inverse integrating factors and Lie symmetries for degenerate planar centers. J. Differ. Equ. 252 (1), 344357.Google Scholar
[20] Liu, Y. & Li, J. (2009) New study on the center problem and bifurcation of limit cycles for the Lyapunov system (I). Internat. J. Bifur. Chaos 19 (11), 37913801.CrossRefGoogle Scholar
[21] Liu, Y. & Li, J. (2009) New study on the center problem and bifurcation of limit cycles for the Lyapunov system (II). Internat. J. Bifur. Chaos 19 (9), 30873099.CrossRefGoogle Scholar
[22] Marsden, J. E. & Ratiu, T. S. (1994) Introduction to Mechanics and Symmetry. A basic exposition of classical mechanical systems. Texts in Applied Mathematics, 17. Springer-Verlag, New York, xvi+500 pp.CrossRefGoogle Scholar
[23] Moussu, R. (1982) Symétrie et forme normale des centres et foyers dégénérés. Ergodic Theory Dyn. Syst. 2 (2), 241251.Google Scholar
[24] Reeb, G. (1952) Sur certaines propriétés topologiques des variétés feuilletées (French) Publ. Inst. Math. Univ. Strasbourg 11, pp. 589, 155–156. Actualités Sci. Ind., no. 1183 Hermann & Cie., Paris.Google Scholar