Published online by Cambridge University Press: 04 March 2005
Movement of biological organisms is frequently initiated in response to a diffusible or otherwise transported signal, and in its simplest form this movement can be described by a diffusion equation with an advection term. In systems in which the signal is localized in space the question arises as to whether aggregation of a population of indirectly-interacting organisms, or localization of a single organism, is possible under suitable hypotheses on the transition rules and the production of a control species that modulates the transition rates. It has been shown [25] that continuum approximations of reinforced random walks show aggregation and even blowup, but the connections between solutions of the continuum equations and of the master equation for the corresponding lattice walk were not studied. Using variational techniques and the existence of a Lyapunov functional, we study these connections here for certain simplified versions of the model studied earlier. This is done by relating knowledge about the shape of the minimizers of a variational problem to the asymptotic spatial structure of the solution.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.