Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-17T11:03:40.775Z Has data issue: false hasContentIssue false

Effects of xenon on mesenteric blood flow

Published online by Cambridge University Press:  02 June 2005

R. Bogdanski
Affiliation:
Technische Universität München, Klinik für Anaesthesiologie, Klinikum rechts der Isar, Munich, Germany
M. Blobner
Affiliation:
Technische Universität München, Klinik für Anaesthesiologie, Klinikum rechts der Isar, Munich, Germany
H. Fink
Affiliation:
Technische Universität München, Klinik für Anaesthesiologie, Klinikum rechts der Isar, Munich, Germany Technische Universität München, Institut für Experimentelle Onkologie und Therapieforschung, Klinikum rechts der Isar, Munich, Germany
E. Kochs
Affiliation:
Technische Universität München, Klinik für Anaesthesiologie, Klinikum rechts der Isar, Munich, Germany
Get access

Abstract

Summary

Background and objective: The effects of xenon on mesenteric vascular resistance have not been investigated. Because human beings anaesthetized with xenon show good cardiovascular stability, we believed that the agent would have little or no effect on vascular resistance in the splanchnic bed. We determined the effects of different inhaled xenon concentrations on mesenteric blood flow and mesenteric oxygen consumption in pigs sedated with intravenous propofol.

Methods: Twenty-three minipigs were instrumented with transit time flow probes around the pulmonary and superior mesenteric arteries as well as with pulmonary artery and portal venous catheters. A 14 h recovery was allowed followed by recordings of baseline values. Xenon was then randomly administered in 0.30, 0.50, and 0.70 end-tidal fractions.

Results: The administration of xenon resulted in an 8% (not dose dependent) decrease in mean arterial pressure (from 99 ± 15 to 91 ± 19 mmHg; P < 0.05), a 20% decrease in calculated systemic oxygen consumption (from 0.23 ± 0.07 to 0.19 ± 0.04 L min−1; P < 0.01), a 20% reduction in mesenteric oxygen delivery (from 41 ± 12 to 33 ± 11 mL min−1; P < 0.001), a 37% reduction in mesenteric metabolic rate of oxygen (from 11.3 ± 3.6 to 7.1 ± 3.2 mL min−1; P < 0.01) and an 8% decrease in mesenteric artery blood flow (0.22 ± 0.07 to 0.20 ± 0.07 L min−1; P < 0.05) in a dose-dependent fashion. Heart rate, cardiac output, systemic vascular resistance, mesenteric vascular resistance, mesenteric oxygen extraction fraction and portal lactate concentration were not significantly altered by xenon.

Conclusions: Xenon inhalation in the propofol-sedated pig had no measurable effects on mesenteric vascular resistance. This finding may partly explain the well-known cardiovascular stability observed in patients anaesthetized with xenon. Although mesenteric artery blood flow and mesenteric oxygen delivery decreased during xenon administration, unchanged mesenteric oxygen extraction fraction and portal lactate suggest that metabolic regulation of the splanchnic circulation remained unaltered.

Type
Original Article
Copyright
2003 European Society of Anaesthesiology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boomsma F, Rupreht J, Man in 't Veld AJ, de Jong FH, Dzoljic M, Lachmann B. Haemodynamic and neurohumoral effects of xenon anaesthesia. A comparison with nitrous oxide. Anaesthesia 1990; 45: 273278.Google Scholar
Cullen SC, Eger EID, Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology 1969; 31: 305309.Google Scholar
Lachmann B, Armbruster S, Schairer W, et al. Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 1990; 335: 14131415.Google Scholar
Dingley J, Ivanova-Stoilova TM, Grundler S, Wall T. Xenon: recent developments. Anaesthesia 1999; 54: 335346.Google Scholar
Nakata Y, Goto T, Morita S. Comparison of inhalation inductions with xenon and sevoflurane. Acta Anaesthesiol Scand 1997; 41: 11571161.Google Scholar
Goto T, Saito H, Nakata Y, Uezono S, Ichinose F, Morita S. Emergence times from xenon anaesthesia are independent of the duration of anaesthesia. Br J Anaesth 1997; 79: 595599.Google Scholar
Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science 1980; 210: 899901.Google Scholar
Luttropp HH, Romner B, Perhag L, et al. Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transoesophageal echocardiography and transcranial Doppler sonography study. A minimal-flow system for xenon anesthesia. Anaesthesia 1993; 48: 10451049.Google Scholar
Jacob L, Boudaoud S, Payen D, et al. Isoflurane, and not halothane, increases mesenteric blood flow supplying esophageal ileocoloplasty. Anesthesiology 1991; 74: 699704.Google Scholar
Andreen M, Irestedt L, Zetterstrom B. The different responses of the hepatic arterial bed to hypovolaemia and to halothane anaesthesia. Acta Anaesthesiol Scand 1977; 21: 457469.Google Scholar
Tverskoy M, Gelman S, Fowler KC, Bradley EL. Intestinal circulation during inhalation anesthesia. Anesthesiology 1985; 62: 462469.Google Scholar
Gelman S, Fowler KC, Smith LR. Regional blood flow during isoflurane and halothane anesthesia. Anesth Analg 1984; 63: 557565.Google Scholar
Gelman SI. The effect of enteral oxygen administration on the hepatic circulation during halothane anaesthesia: experimental investigations. Br J Anaesth 1975; 47: 12531259.Google Scholar
Schindler E, Hempelmann G. Durchblutung und Metabolismus von Leber und Splanchnikusgebiet unter Sevofluran. Anaesthesist 1998; 47 (Suppl 1): S19–23.Google Scholar
Frink EJ Jr, Morgan SE, Coetzee A, Conzen PF, Brown BR Jr. The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology 1992; 76: 8590.Google Scholar
O'Riordan J, O'Beirne HA, Young Y, Bellamy MC. Effects of desflurane and isoflurane on splanchnic microcirculation during major surgery. Br J Anaesth 1997; 78: 9596.Google Scholar
Marx T, Froeba G, Wagner D, et al. Effects on haemodynamics and catecholamine release of xenon anaesthesia compared with total i.v. anaesthesia in the pig. Br J Anaesth 1997; 78: 326327.Google Scholar
Stowe DF, Rehmert GC, Kwok WM, Weigt HU, Georgieff M, Bosnjak ZJ. Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts or myocytes. Anesthesiology 2000; 92: 516522.Google Scholar
Hettrick DA, Pagel PS, Kersten JR, et al. Cardiovascular effects of xenon in isoflurane-anesthetized dogs with dilated cardiomyopathy. Anesthesiology 1998; 89: 11661173.Google Scholar
Lynch C III, Baum J, Tenbrinck R. Xenon anesthesia. Anesthesiology 2000; 92: 865868.Google Scholar
Hellebrekers LJ, Liard JF, Laborde AL, Greene AS, Cowley AWM Jr. Regional autoregulatory responses during infusion of vasoconstrictor agents in conscious dogs. Am J Physiol 1990; 259: H12701277.Google Scholar
Granger DN, Granger HJ. Systems analysis of intestinal hemodynamics and oxygenation. Am J Physiol 1983; 245: G786796.Google Scholar
Shepherd AP. Intestinal blood flow autoregulation during foodstuff absorption. Am J Physiol 1980; 239: H156162.Google Scholar
Froeba G. Neue Aspekte der Xenonanaesthesie. Anaesthesiologie Intensivmedizin Notfallmedizin Schmerztherapie 1998; 33 (Suppl 3): 507.Google Scholar
Reinelt H, Schirmer U, Marx T, Topalidis P, Schmidt M. Diffusion of xenon and nitrous oxide into the bowel. Anesthesiology 2001; 94: 475477.Google Scholar
Cevese A, Grasso R, Poltronieri R, Schena F, Vacca G. Peripheral blood flows during colorectal distension in anaesthetised dogs. Pflugers Arch 1993; 424: 488493.Google Scholar
Nakata Y, Goto T, Saito H, et al. Plasma concentration of fentanyl with xenon to block somatic and hemodynamic responses to surgical incision. Anesthesiology 2000; 92: 10431048.Google Scholar
Megens AA, Canters LL, Awouters FH, Niemegeers CJ. Is in vivo dissociation between the antipropulsive and antidiarroheal properties of opioids in rats related to gut selectivity? Arch Int Pharmacodyn Ther 1989; 298: 220229.Google Scholar
Hartman JC, Olszanski DA, Hullinger TG, Brunden MN. In vivo validation of a transit-time ultrasonic volume flow meter. J Pharmacol Toxicol Methods 1994; 31: 153160.Google Scholar
Blobner M, Bogdanski R, Kochs E, Henke J, Findeis A, Jelen-Esselborn S. Effects of intraabdominally insufflated carbon dioxide and elevated intraabdominal pressure on splanchnic circulation: an experimental study in pigs. Anesthesiology 1998; 89: 475482.Google Scholar
Blobner M, Bogdanski R, Jelen-Esselborn S, Henke J, Erhard W, Kochs E. Viszerale Resorption von intraabdominell insuffliertem Kohlendioxid beim Schwein. Anasthesiol Intensivmed Notfallmed Schmerzther 1999; 34: 9499.Google Scholar
Fink H, Blobner M, Bogdanski R, Hanel F, Werner C, Kochs E. Effects of xenon on cerebral blood flow and autoregulation: an experimental study in pigs. Br J Anaesth 2000; 84: 221225.Google Scholar