Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:42:37.224Z Has data issue: false hasContentIssue false

Writing a Scientific Paper II. Communication by Graphics

Published online by Cambridge University Press:  18 July 2011

C. Sterken*
Affiliation:
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Get access

Abstract

This paper discusses facets of visual communication by way of images, graphs, diagrams and tabular material. Design types and elements of graphical images are presented, along with advice on how to create graphs, and on how to read graphical illustrations. This is done in astronomical context, using case studies and historical examples of good and bad graphics.

Design types of graphs (scatter and vector plots, histograms, pie charts, ternary diagrams and three-dimensional surface graphs) are explicated, as well as the major components of graphical images (axes, legends, textual parts, etc.).

The basic features of computer graphics (image resolution, vector images, bitmaps, graphical file formats and file conversions) are explained, as well as concepts of color models and of color spaces (with emphasis on aspects of readability of color graphics by viewers suffering from color-vision deficiencies).

Special attention is given to the verity of graphical content, and to misrepresentations and errors in graphics and associated basic statistics. Dangers of dot joining and curve fitting are discussed, with emphasis on the perception of linearity, the issue of nonsense correlations, and the handling of outliers. Finally, the distinction between data, fits and models is illustrated.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Allen, C.G., 1961, The most probable choice between several discrepant observations and the formation therefrom of the most likely induction, Biometrika, 48, 1 Google Scholar
Appenzeller, I., 1972, Light Variations of High Luminosity O and B Stars in the Large Magellanic Cloud, PASJ, 24, 483 Google Scholar
Barnett, V., & Lewis, T., 1984, in Outliers in Statistical Data (John Wiley and Sons), 2nd edition, p. 4
Belton, M.J.S., Thomas, P., Veverka, J., et al., 2007, The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model, Icarus, 187, 332 CrossRefGoogle Scholar
Brosens, K., 2000, Astronomia, in Wereldwijs. Wetenschappers rond Keizer Karel (Leuven, Stedelijk Museum Van der Kelen–Mertens, Leuven), p. 259
Butler, J.C., 1979, Trends in ternary petrologic variation diagrams – fact or fantasy?, Amer. Mineral., 64, 1115 Google Scholar
Chanut, T., Winter, O.C., & Tsuchida, M., 2008, Nebular gas drag and co-orbital system dynamics, A&A, 481, 519 Google Scholar
Cole, B.L., 2004, The handicap of abnormal colour vision, Clinic. Exper. Optom., 87, 258 CrossRefGoogle ScholarPubMed
Cramer, N., 1993, Intrinsic colours of O, B and early A-type stars in the Geneva system, A&A, 269, 457 Google Scholar
Cramer, N., 1994, in The Impact of Long-Term Monitoring on Variable Star Research: Astrophysics, Instrumentation, Data Handling, Archiving (Dordrecht: Kluwer), ed. C. Sterken & M. de Groot. NATO Adv. Sci. Inst. Ser. C, 436, 405
Cramer, N., 2005, Aspects of Geneva Photometry, Part 3: Doing physics with colours, Orion, 326, 4 Google Scholar
Cramer, N., & Maeder, A., 1979, Luminosity and T eff determinations for B-type stars, A&A, 78, 305 Google Scholar
Dalton, J., 1798, Extraordinary facts relating to the vision of colours, Memoirs of the Literary and Philosophical Society of Manchester, 5, 28 Google Scholar
Deeming, T.J., 1968, The analysis of linear correlation in astronomy, Vist. Astron., 10, 125 CrossRefGoogle Scholar
Delambre, J., & Méchain, P., 1806, Base du Système Métrique Décimal, Discours Préliminaire, p. 158
Delmarcel, G., 1999, Flemish Tapestry (London: Thames & Hudson Ltd.)
Delmarcel, G., & Brosens, K., 2009, personal communication
Duerbeck, H.W., & Seitter, W.C., 2001, In Hubble’s shadow: early research on the expansion of the universe, in Homage to Miklós Konkoly Thege (1842–1916). 100 Years of Observational Astronomy and Astrophysics., ed. C. Sterken & J.B. Hearnshaw, J. Astron. Data, 7, 7
Eddington, A.S., 1931, A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-galactic Nebulae, MNRAS, 91, 483 Google Scholar
Evans, J.E., & Maunder, E.W., 1903, Experiments as to the actuality of the “Canals” observed on Mars, MNRAS, 63, 488 CrossRefGoogle Scholar
Fisher, R.A., 1925, Statistical methods for research workers (Edinburgh: Oliver and Boyd)
Fu, J.N., & Sterken, C., 2003, Long-term variability of the SX Phoenicis star CY Aquarii, A&A, 405, 685 Google Scholar
Funkhouser, H.G., 1937, Historical Development of the Graphical Representation of Statistical Data, Osiris, 3, 269 CrossRefGoogle Scholar
Ho, P.Y., 1962, Ancient and mediaeval observations of comets and novae in Chinese sources, Vist. Astron., 5, 127 Google Scholar
Hoaglin, D.C., Mosteller, F., & Tukey, J.W., 1983, in Understanding robust and exploratory data analysis (New York: Wiley), p. 3
Hermann, L., 1870, Eine Erscheinung simultanen Contrastes, Pflüg. Arch. Gesamte Physiol., 3, 13 CrossRefGoogle Scholar
Holweger, H., & Oertel, K.B., 1971, Influence of Hyperfine Structure on the Solar Cobalt Abundance, A&A, 10, 434 Google Scholar
Hosotte, S., 2009, personal communication
Hubble, E., 1929, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae, Proc. Nation. Acad. Sci. USA, 15, 168 CrossRefGoogle ScholarPubMed
Hungerford, M.W. (née M. Wolfe Hamilton) 1878, Molly Bawn (New York: Hurst and Company Publishers)
Kodak Handbook for the professional photographer, 1979, 2nd edition
Kraus, S., Weigelt, G., Balega, Y.Y., et al., 2009, Tracing the young massive high-eccentricity binary system θ1 Orionis C through periastron passage, A&A, 497, 195 Google Scholar
Kurtz, D.W., 1983, The High Frequency Limit to Fourier Analysis. A Reminder of the Nyquist Frequency, IBVS, 2285
Landolt, A.U., 2007, Standardization in the Classical UBVRI Photometric System, in The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ASP Conf. Ser., ed. C. Sterken, 364, 27
Lemaître, G., 1927, Un Univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annal. Soc. Scient. Bruxelles, XLVII, 49
Littmann, M., 1998, The Heavens on Fire (Cambridge: Cambridge University Press)
Lockyer, W.J.S., 1903, Sun-spot variation in latitude, 1861–1902, MNRAS, 64A, 5 CrossRefGoogle Scholar
Maunder, E.W., 1904, Note on the distribution of sun-spots in heliographic latitude, 1874–1902, MNRAS, 64, 747 CrossRefGoogle Scholar
Maxwell, J.C., 1855, Experiments on colour, as perceived by the eye, with remarks on colour-blindness, Trans. Royal Soc. Edinburgh, 21, part II
Maxwell, J.C., 1860, On the Theory of Compound Colours, and the Relations of the Colours of the Spectrum, Trans. Royal Soc. London, 150, 57 CrossRefGoogle Scholar
McLuhan, M., 1962, The Gutenberg Galaxy: The Making of Typographic Man (University of Toronto Press)
McLuhan, M., 1964, Understanding Media (Routledge Classics)
Montgomery, S.L., 1999, The Moon and the western Imagination (The University of Arizona Press)
Mortimer, C., 1731, An Account of Mr. James Christopher Le Blon’s Principles of Printing, in Imitation of Painting, and of Weaving Tapestry, in the Same Manner as Brocades, Phil. Trans. R. A. S., 37, 101 Google Scholar
Murtagh, F., 1990, in Errors, Bias and Uncertainties in Astronomy, ed. C. Jaschek & F. Murtagh (Cambridge: Cambridge University Press), p. 385
Parkhurst, C., & Feller, R.L., 2007, Who invented the color wheel?, Color Res. Appl., 7, 217 CrossRefGoogle Scholar
Pelkonen, V.-M., Juvela, M., & Padoan, P., 2009, Predictions of polarized dust emission from interstellar clouds: spatial variations in the efficiency of radiative torque alignment, A&A, 502, 833 Google Scholar
Rada, W.S., & Stephenson, F.R., 1992, A Catalogue of Meteor Showers in Mediaeval Arab Chronicles, QJRAS, 33, 5 Google Scholar
Rozelot, J.P., 1969, Photography of the U.V. Lines in the Solar Corona, A&A, 2, 122 Google Scholar
Shannon, C.E., 1948, A Mathematical Theory of Communication, Bell Sys. Techn. J., 27, 379423, 623–656, available at http://portal.acm.org/CrossRefGoogle Scholar
Shannon, C.E., 1949, Communication in the presence of noise, Proc. Inst. Radio Eng., 37, 10 (Reprinted Proc. IEEE, Vol. 86, No. 2, Feb. 1998) Google Scholar
Shannon, C.E., & Weaver, W., 1949, The Mathematical Theory of Communication (Univ. of Illinois Press)
Shore, S.N., 2009, Modern astronomical surveys and the development of informatics, A&A, 500, 491 Google Scholar
Stebbins, J., & Whitford, A.J., 1945, Six-color photometry of stars. III. The colors of 238 stars of different spectral types, ApJ, 102, 318 CrossRefGoogle Scholar
Steer, W.A., 2004, Eye sensitivity, http://www.techmind.org/colour/
Stephenson, F.R., 2010, private communication
Sterken, C., 1992, On the future of existing photometric systems, Vist. Astron., 35, 139 CrossRefGoogle Scholar
Sterken, C., 2000, Mode Identification through Photometry: Full Colours?, in Delta Scuti and Related Stars, Reference Handbook and Proceedings of the 6th Vienna Workshop in Astrophysics”, ed. M. Breger & M. Montgomery. San Francisco, ASP Conf. Ser., Vol. 210, p. 99
Sterken, C., 2009, Over Wetenschapshistorisch Onderwijs, ed. C. Sterken & D. Segers (Brussels: Vrije Universiteit Brussel, Belgium)
Sterken, C., 2010, Photometric Standardisation in the Variability Domain, in Variable Stars, the Galactic Halo and Galaxy Formation, ed. C. Sterken, N. Samus & L. Szabados, Moscow: Sternberg Astronomical Institute of Moscow University, p. 125
Sterken, C., 2011, Just one new measurement of the B[e] supergiant Hen-S22, IBVS, 6000
Sterken, C., Milone, E.F., & Young, A.T., 2011, Photometric Precision and Accuracy, in Astronomical Photometry: Past, Present, and Future (Springer New York), p. 1
Teanby, N.A., 2007, Constrained Smoothing of Noisy Data Using Splines in Tension, Math. Geol., 39, 419 CrossRefGoogle Scholar
Tubbesing, S., Kaufer, A., Stahl, O., et al., 2002, The eclipsing hypergiant R 81 (B2.5Ia-O) in the Large Magellanic Cloud. System properties from spectroscopic and photometric monitoring, A&A, 389, 931 Google Scholar
Tufte, E.R., 1983, The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press)
Tufte, E.R., 1990, Envisioning Information (Cheshire, CT: Graphics Press)
Tufte, E.R., 1997, Visual Explanations (Cheshire, CT: Graphics Press)
Tukey, J.W., 1977, Exploratory Data Analysis (Boston: Addison-Wesley)
Tuvikene, T., 2011, Ph.D. Thesis, Vrije Universiteit Brussel
Tuvikene, T., Sterken, C., Brogt, E., et al., 2010, New times of maximum of CY Aquarii, J. Astron. Data, 16, 2 Google Scholar
Usoskin, I.G., Solanki, S.K., & Kovaltsov, G.A., 2007, Grand minima and maxima of solar activity: new observational constraints, A&A, 471, 301 Google Scholar
van Genderen, A.M., & Sterken, C., 2007, Orbital Effects on the Light Curves of η Car, BP Cru, and other Eccentric Binaries, IBVS, 5782
Wing, R.F., 2011, in Astronomical Photometry: Past, Present, and Future, ed. E.F. Milone & C. Sterken (Springer Verlag, New York), p. 143
Young, T., 1802, The Bakerian Lecture: On the Theory of Light and Colours, Phil. Trans. R. Soc. Lond., 92, 1248 CrossRefGoogle Scholar
Young, T., 1845, A Course of Lectures on Natural Philosophy and the Mechanical Arts (London: Taylor & Walton)