Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T18:02:15.221Z Has data issue: false hasContentIssue false

Telescopes don’t make catalogues!

Published online by Cambridge University Press:  15 February 2011

D.W. Hogg
Affiliation:
Center for Cosmology and Particle Physics, New York University and Max-Planck-Institut für Astronomie, Heidelberg
D. Lang
Affiliation:
Princeton University Observatory
Get access

Abstract

Telescopes don’t make catalogues, they make intensity measurements; any preciseexperiment performed with a telescope ought to involve modelling those measurements.People make catalogues, but because a catalogue requires hard decisionsabout calibration and detection, no catalogue can contain all of the information in theraw pixels relevant to most scientific investigations. Here we advocate makingcatalogue-like data outputs that permit investigators to test hypotheses with almost thepower of the original image pixels. The key is to provide users approximations tolikelihood tests against the raw image pixels. We advocate three options, in order ofincreasing difficulty: The first is to define catalogue entries andassociated uncertainties such that the catalogue contains the parameters of an approximatedescription of the image-level likelihood function. The second is to produce aK-catalogue sampling in “catalogue space” that samplesa posterior probability distribution of catalogues given the data. The third is to exposea web service or equivalent that can compute the full image-level likelihood for anyuser-supplied catalogue.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Abazajian, K.N., et al., 2009, ApJS, 182, 543 CrossRef
Anderson, J., et al., 2008, AJ, 135, 2114 CrossRef
Bernstein, G.M., & Jarvis, M., 2002, AJ, 123, 583 CrossRef
Bolton, A.S., & Schlegel, D.J., 2010, PASP, 122, 248
Bovy, J., Murray, I., & Hogg, D.W., 2010a, AJ, 711, 1157 CrossRef
Bovy, J., & Hogg, D.W., 2010b, ApJ, 717, 617 CrossRef
Budavári, T., & Szalay, A.S., 2008, ApJ, 679, 301 CrossRef
Dehnen, W., 1998, AJ, 115, 2384 CrossRef
De Simone, R.S., Wu, X., & Tremaine, S., 2004, MNRAS, 350, 627 CrossRef
Hogg, D.W., & Lang, D., 2008, AIP Conf. Proc., 1082, 331 [arXiv:0810.3851]
Lang, D., Hogg, D.W., Jester, S., & Rix, H.-W., 2009, AJ, 137, 4400 CrossRef
Lang, D., Hogg, D.W., Mierle, K., Blanton, M., & Roweis, S., 2010, AJ, 139, 1782 CrossRef
MacKay, D., 2003, “Information Theory, Inference, and Learning Algorithms” (Cambridge University Press)
Monet, D.G., et al., 2003, AJ, 125, 984 CrossRef
Skrutskie, M.F., et al., 2006, AJ, 131, 1163CrossRef