Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:33:15.971Z Has data issue: false hasContentIssue false

Stellar Magnetospheres

Published online by Cambridge University Press:  03 November 2009

S. Owocki*
Affiliation:
Bartol Research Institute, Department of Physics & Astrophysics, University of Delaware, Newark, DE 19716, USA
Get access

Abstract

The term “magnetosphere” originated historically from early spacecraft measurements of plasma trapped by the magnetic field of earth and other planets. But over the years this concept has also been applied to the magnetically channeled wind outflows from magnetic stars. The review here describes the basic magnetohydrodynamics (MHD) approach used to model such stellar magnetospheres, with emphasis on the central competition between confinement by the magnetic field vs. expansion of the stellar wind outflow. A key result is that, for a star with a dipole surface field B, surface radius R, and asymptotic wind momentum ${\dot M} v_{\infty}$, this competition can be well characterized by a single “wind magnetic confinement parameter”, $\eta_{\ast} \equiv B_{\ast}^{2} R_{\ast}^{2}/{\dot M} v_{\infty}$. For large η, closed magnetic looops can confine parts of the wind up to an Alfvén radius RAη1/4 R, leading to “magnetically confined wind shocks” that might produce the relatively hard X-ray emission seen in some magnetic stars. In rotating stars, RA also roughly characterizes the radius up to which material co-rotates with the underlying star. For the outflowing wind, the associated loss of angular momentum, can lead to spindown in the stellar rotation over a time much shorter than the star's evolutionary timescale. For confined material within RA but beyond the star's Keplerian corotation radius RK, the net centrifugal support against gravity can lead to a “rigidly rotating magnetosphere” composed of accumulating trapped wind. This can provide a natural explanation for the rotationally modulated Balmer line emission observed from magnetic Bp stars. Moreover, magnetic reconnection heating from episodic centrifugal breakout events might explain the occasional very hard X-ray flares seen from such stars. Overall, it seems clear that magnetic fields can play a strong role in confining and channeling such stellar wind outflows, providing a natural explanation for various observational signatures structure and variability in the winds and circumstellar envelopesof massive stars.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babel, J., & Montmerle, T., 1997b, A&A, 323, 121
Borra, E.F., & Landstreet, J.D., 1979, ApJ, 228, 809 CrossRef
Cassinelli, J.P., Brown, J.C., Maheswaran, M., Miller, N.A., & Telfer, D.C., 2002, ApJ, 578, 951 CrossRef
Castor, J.I., Abbott, D.C., & Klein, R.I., 1975, ApJ, 195, 157 CrossRef
Charbonneau, P., & MacGregor, K.B., 2001, ApJ, 559, 1094 CrossRef
Cranmer, S.R., 2000, ApJ, 532, 1197 CrossRef
Cranmer, S.R., et al., 1999, ApJ, 511, 481
Cranmer, S.R., & Owocki, S.P., 1996, ApJ, 462, 469 CrossRef
Donati, J.-F., Babel, J., Harries, T.J., et al., 2002, MNRAS, 333, 55
Feigelson, E.D., Broos, P., Gaffney, J.A., et al., 2002, ApJ, 574, 258
Gagné, M., Oksala, M.E., Cohen, D.H., et al., 2005, ApJ, 628, 986
Groote, D., & Hunger, K., 1982, A&A, 116, 64
Groote, D., & Schmitt, J.H.M.M., 2004, A&A, 418, 235
Hesser, J., Ugarte, P.P., & Moreno, H., 1977, ApJ, 216, L31 CrossRef
Hundhausen, A.J., 1973, J. Geophys. Res., 78, 1528 CrossRef
Kohl, J.L., et al., 1999, ApJ, 510, L59
Landstreet, J.D., & Borra, E.F., 1978, ApJ, 224, L5 CrossRef
Lucy, L.B., & Solomon, P.M., 1970 ApJ, 159, 879
MacGregor, K.B., & Cassinelli, J.P., 2003, ApJ, 586, 480 CrossRef
Mestel, L., 2003, in Magnetic Fields in O, B and A stars, ed. L.A., Balona, H.F., Henrichs & R. Medupe, PASPC, 305, 3
Mikić, Z., Linker, J.A., Lionello, R., Riley, P., & Titov, V., 2007, in Solar and Stellar Physics Through Eclipses, ed. O. Demircan, S.O. Selam & B. Albayrak, PASPC, 370, 299
Mullan, D.J., 1984, ApJ, 283, 303 CrossRef
Neiner, C., Hubert, A.-M., Frémat, Y., et al., 2003, A&A, 409, 275
Neiner, C., Geers, V.C., Henrichs, H.F., et al., 2003b, A&A, 406, 1019
Owocki, S.P., & ud-Doula, A., 2004, ApJ, 600, 1004 CrossRef
Owocki, S., & ud-Doula, A., 2003, in Magnetic Fields in O, B and A stars, ed. L.A. Balona, H.F. Henrichs & R. Medupe, PASPC, 305, 350
Parker, E.N., 1955, ApJ, 122, 293 CrossRef
Pneuman, G.W., & Kopp, R.A., 1971, Sol. Phys., 18, 258 CrossRef
Sanz-Forcada, J., Franciosini, E., & Pallavicini, R., 2004, A&A, 421, 715
Stone, J.M., & Norman, M.L., 1992, ApJS, 80, 753 CrossRef
Townsend, R.H.D., 1997, MNRAS, 284, 839 CrossRef
Townsend, R.H.D., Owocki, S.P., & Howarth, I.D., 2004a, MNRAS, 350, 189 CrossRef
Townsend, R.H.D., Owocki, S.P., & Groote, D., 2005, ApJ, 630, L81 CrossRef
Townsend, R.H.D., & Owocki, S.P., 2005, MNRAS, 357, 251 CrossRef
Townsend, R.H.D., Owocki, S.P., & Ud-Doula, A., 2007, MNRAS, 382, 139 CrossRef
ud-Doula, A., & Owocki, S.P., 2002, ApJ, 576, 413 CrossRef
ud-Doula, A., 2003, Ph.D. Thesis, University of Delaware
ud-Doula, A., Townsend, R.H.D., & Owocki, S.P., 2006, ApJ, 640, L191 CrossRef
ud-Doula, A., Owocki, S.P., & Townsend, R.H.D., 2008, MNRAS, 385, 97 CrossRef
Weber, E.J., & Davis, L.J., 1967, ApJ, 148, 217 CrossRef