Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T20:04:38.840Z Has data issue: false hasContentIssue false

Star Formation in Spiral Arms

Published online by Cambridge University Press:  16 November 2011

B.G. Elmegreen*
Affiliation:
IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA
Get access

Abstract

The origin and types of spiral arms are reviewed with an emphasis on the connections between these arms and star formation. Flocculent spiral arms are most likely the result of transient instabilities in the gas that promote dense cloud formation, star formation, and generate turbulence. Long irregular spiral arms are usually initiated by gravitational instabilities in the stars, with the gas contributing to and following these instabilities, and star formation in the gas. Global spiral arms triggered by global perturbations, such as a galaxy interaction, can be wavemodes with wave reflection in the inner regions. They might grow and dominate the disk for several rotations before degenerating into higher-order modes by non-linear effects. Interstellar gas flows through these global arms, and through the more transient stellar spiral arms as well, where it can reach a high density and low shear, thereby promoting self-gravitational instabilities. The result is the formation of giant spiral arm cloud complexes, in which dense molecular clouds form and turn into stars. The molecular envelops and debris from these clouds appear to survive and drift through the interarm regions for a long time, possibly 100 Myr or more, with lingering spontaneous star formation and triggered star formation in the pieces that are still at high-pressure edges near older HII regions.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, R., 2007, A&A, 470, 539
Bertin, G., Lin, C.C., Lowe, S.A., & Thurstans, R.P., 1989, ApJ, 338, 104CrossRef
Bigiel, F., Leroy, A., Walter, F., et al., 2008, AJ, 136, 2846CrossRef
Boulanger, F., & Viallefond, F., 1992, A&A, 266, 37
Bournaud, F., Duc, P.-A., Brinks, E., et al., 2007, Sci., 316, 1166CrossRef
Bournaud, F., Elmegreen, B.G., Teyssier, R., Block, D.L., & Puerari, I., 2010, MNRAS, 409, 1088CrossRef
Braun, R., Heald, G., & Beck, R., 2010, A&A, 514, 42
Buta, R., & Combes, F., 1996, Fund. Cosmic Phys., 17, 95
Dobbs, C.L., & Pringle, J.E., 2009, MNRAS, 396, 1579CrossRef
Elmegreen, B.G., 1979, ApJ, 231, 372CrossRef
Elmegreen, B.G., 1987, ApJ, 312, 626CrossRef
Elmegreen, B.G., 1992, in SAAS FEE Lectures, “The Galactic Interstellar Medium,” with Burton, W.B. and Genzel, R., ed. Pfenniger, D. & Bartholdi, P. (Berlin: Springer), 157Google Scholar
Elmegreen, B.G., 1994, ApJ, 425, L73CrossRef
Elmegreen, B.G., 2002, ApJ, 577, 206CrossRef
Elmegreen, B.G., 2007, ApJ, 668, 1064CrossRef
Elmegreen, B.G., & Elmegreen, D.M., 1983, MNRAS, 203, 31CrossRef
Elmegreen, B.G., & Elmegreen, D.M., 1986, ApJ, 311, 554CrossRef
Elmegreen, B.G., & Elmegreen, D.M., 1987, ApJ, 320, 182CrossRef
Elmegreen, B.G., Elmegreen, D.M., & Montenegro, L., 1992, ApJS, 79, 37CrossRef
Elmegreen, B.G., Wilcots, E., & Pisano, D.J., 1998, ApJ, 494, L37CrossRef
Engargiola, G., Plambeck, R.L., Rosolowsky, E., & Blitz, L., 2003, ApJS, 149, 343CrossRef
Foyle, K., Rix, H.-W., Walter, F., & Leroy, A., 2010, ApJ, 725, 534CrossRef
Fuchs, B., Dettbarn, C., & Tsuchiya, T., 2005, A&A, 444, 1
Grabelsky, D.A., Cohen, R.S., Bronfman, L., Thaddeus, P., &May, J., 1987, ApJ, 315, 122CrossRef
Karataeva, G.M., Drozdovsky, I.O., Hagen-Thorn, V.A., et al., 2004, AJ, 127, 789CrossRef
Kennicutt, R.C. Jr., 1998, ApJ, 498, 541CrossRef
Kim, W.-T., & Ostriker, E.C., 2001, ApJ, 559, 70CrossRef
Kormendy, J., & Norman, C.A., 1979, ApJ, 233, 539CrossRef
Lada, C.J., Margulis, M., Sofue, Y., Nakai, N., & Handa, T., 1988, ApJ, 328, 143CrossRef
Lau, Y.Y., Lin, C.C., & Mark, J.W.-K., 1976, Pub. National. Acad. Sciences, 73, 1379CrossRef
La Vigne, M.A., Vogel, S.N., & Ostriker, E.C., 2006, ApJ, 650, 818CrossRef
Leroy, A.K., Walter, F., Brinks, E., et al., 2008, AJ, 136, 2782CrossRef
Lin, C.C., Shu, F.H., 1964, ApJ, 140, 646CrossRef
Lindblad, B., 1962, IAUS, 15, 146
Lord, S.D., & Kenney, J.D.P., 1991, ApJ, 381, 130CrossRef
Mark, J.W.-K., 1974, ApJ, 193, 539CrossRef
McGee, R.X., & Milton, J.A., 1964, Aust. J. Phys., 17, 128CrossRef
Mendes de Oliveira, C., Cypriano, E.S., Sodré, L. Jr., & Balkowski, C., 2004, ApJ, 605, 17CrossRef
Morgan, W.W., Whitford, A.E., & Code, A.D., 1953, ApJ, 118, 318CrossRef
Rand, R.J., & Kulkarni, S.R., 1990, ApJ, 349, L43CrossRef
Roberts, W.W., 1969, ApJ, 158, 123CrossRef
Shetty, R., Vogel, S.N., Ostriker, E.C., & Teuben, P.J., 2007, ApJ, 665, 1138CrossRef
Tamburro, D., Rix, H.-W., Walter, F., et al., 2008, AJ, 136, 2872CrossRef
Thomasson, M., Donner, K.H., & Elmegreen, B.G., 1992, A&A, 250, 316
Toomre, A., 1964, ApJ, 139, 1217CrossRef
Toomre, A., 1969, ApJ, 158, 899CrossRef
Toomre, A., 1981, in “The structure and evolution of normal galaxies” (Cambridge: Cambridge University Press), 111Google Scholar
Toomre, A., & Toomre, J., 1972, ApJ, 178, 623CrossRef
Toomre, A., & Kalnajs, A.J., 1991, in Dynamics of Disc Galaxies (Varberg Castle Sweden), 341Google Scholar
Walter, F., Brinks, E., de Blok, W.J.G., et al., 2008, AJ, 136, 2563CrossRef