Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T21:29:33.507Z Has data issue: false hasContentIssue false

Some Regression Problems in Solar-Terrestrial Sciences: Learning fromMistakes

Published online by Cambridge University Press:  23 January 2015

T. Dudok de Wit*
Affiliation:
LPC2E, UMR 7328 CNRS-University of Orléans, 3A avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
Get access

Abstract

We address three timely regression analysis problems in solar-terrestrial observations: the identification of trends in observations that exhibit a high level of internal variability, the choice of explanatory variables in the multilinear regression of climate data, and the identification of power laws in power spectral densities. In all three of them we focus on some common mistakes, and on how these may help facilitate critical reading of research in the field.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, F., 1970, Numerical Methods that work, Harper and Row (New York)Google Scholar
Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., & Bale, S.D., 2013, Space Sci. Rev., 178, 101CrossRef
Andreon, S., & Hurn, M.A., 2013, Rev. Stat. Anal. Data Mining, 6, 15CrossRef
Aschwanden, M.J. (ed.), 2013, Self-Organized Criticality Systems (Open Academic Press)Google Scholar
Benestad, R.E., & Schmidt, G.A., 2009, J. Geophys. Res. Atmospheres, 114, 14101CrossRef
Berk, R.A., 2004, Regression analysis: A constructive critique, Vol. 11 (SAGE Publications)CrossRefGoogle Scholar
Billings, S.A., 2013, Nonlinear System Identification: NARMAX Methods in the Time, Frequency and Spatio-Temporal Domains (John Wiley & Sons, Ltd. New York)CrossRefGoogle Scholar
Clauset, A., Rohilla Shalizi, C., & Newman, M.E.J., 2009, SIAM Rev., 51, 661CrossRef
Cook, R.D., & Weisberg, S., 2009, Applied Regression Including Computing and Graphics, Vol. 488 (John Wiley & Sons, New York)Google Scholar
Coughlin, K.T., & Tung, K.K., 2006, J. Geophys. Res. Atmospheres, 111, 24102CrossRef
Crooks, S.A., & Gray, L.J., 2005, J. Climate, 18, 996CrossRef
Feigelson, E.D., & Babu, G.J., 2012, Mod. Stat. Meth. Astron., with R Applications (Cambridge University Press, Cambridge, UK)CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., & Dunson, D.B., 2013, Bayesian Data Analysis, CRC Texts in Statistical Science (Chapman & Hall, London)Google Scholar
Gleisner, H., & Thejll, P., 2003, Geophys. Res. Lett., 30, 1711CrossRef
Good, P.I., & Hardin, J.W., 2012, Common Errors in Statistics, 4th edition (and How to Avoid Them) (John Wiley & Sons)Google Scholar
Gray, L.J., Beer, J., Geller, M., et al., 2010, Rev. Geophys., 48, 1CrossRef
King, G., 1986, Am. J. Polit. Sci., 30, 666CrossRef
Korenberg, M., Billings, S., Liu, Y., & McIlroy, P., 1988, Int. J. Control, 48, 193CrossRef
Laštovička, J., Mikhailov, A.V., Ulich, T., et al., 2006, JASTP, 68, 1854
Laštovička, J., Solomon, S.C., & Qian, L., 2011, Space Sci. Rev., 168, 113CrossRef
Lean, J.L., & Rind, D.H., 2008, Geoph. Res. Lett., 35, 18701CrossRef
Maschberger, T., & Kroupa, P., 2009, MNRAS, 395, 931CrossRef
Montgomery, D.C., Peck, E.A., & Vining, G.G., 2012, Introduction to Linear Regression Analysis, Vol. 821, Wiley Series in Probability and Statistic (John Wiley & Sons)Google Scholar
Pearl, J., 2009, Causality: Models, Reasoning, and Inference, 2nd edition (Cambridge University Press, Cambridge, UK)CrossRefGoogle Scholar
Rong, Y., 2000, Environ. Forensics, 1, 213CrossRef
Sahraoui, F., Goldstein, M.L., Robert, P., & Khotyaintsev, Y.V., 2009, Phys. Rev. Lett., 102, 231102CrossRef
Sfıcă, L., & Voiculescu, M., 2014, JASTP, 109, 7
Sornette, D., 2004, Critical Phenomena in Natural Sciences: Chaos, Fractals Self-Organization and Disorder: Concepts and Tools, Springer Series in Synergetics, 2nd edition (Springer Verlag, Heidelberg)Google Scholar
Stocker, T. & Qin, D., 2014, Climate Change 2013 – The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the IPCC (Cambridge University Press, Cambridge)Google Scholar
van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A., 2001, ApJ, 548, 243CrossRef