Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T22:49:14.311Z Has data issue: false hasContentIssue false

solar spicules and jets

Published online by Cambridge University Press:  27 June 2012

E. Tavabi
Affiliation:
Physics Department, Payame Noor University, 19395-3697 Tehran, I, R. of Iran, Iran
S. Koutchmy
Affiliation:
Institut d’Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 Bis Bd. Arago, 75014 Paris, France
A. Ajabshirizadeh
Affiliation:
Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), 55134-441 Maragha, Iran
Get access

Abstract

In order to clear up the origin and possibly explain some solar limb and disc spicule quasi-periodic recurrences produced by overlapping effects, we present a simulation model assuming quasi- random positions of spicules. We also allow a set number of spicules with different physical properties (such as: height, lifetime and tilt angle as shown by an individual spicule) occurring randomly. Results of simulations made with three different spatial resolutions of the corresponding frames and also for different number density of spicules, are analyzed. The wavelet time/frequency method is used to obtain the exact period of spicule visibility. Results are compared with observations of the chromosphere from i/ the Transition Region and Coronal Explorer (TRACE) filtergrams taken at 1600 angstrom, ii/ the Solar Optical Telescope (SOT) of Hinode taken in the Ca II H-line and iii/ the Sac-Peak Dunn’s VTT taken in H? line. Our results suggest the need to be cautious when interpreting apparent oscillations seen in spicule image sequences when overlapping is present, i.e.; when the spatial resolution is not enough to resolve individual components of spicules.

Type
Research Article
Copyright
© EAS, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajabshirizadeh, A., Tavabi, E., & Koutchmy, S., 2008, New Astron., 13, 93 CrossRef
Ajabshirizadeh, A., Tavabi, E., & Koutchmy, S., 2009, A&SS, 319, 31
Baudin, F., Bocchialini, K., & Koutchmy, S., 1996, A&A, 314, L9
Beckers, J.M., 1964, A study of the fine structures in the solar chromosphere, Ph.D. Thesis, Utrecht
Christopoulou, E.B., & Georgakilas, A.A., 2001, & Koutchmy, S., Solar Phys., 199, 61 Google Scholar
De Pontieu, B., Erdelyi, R., & De Wijn, A.G., 2003, ApJ, 595, L63 CrossRef
De Pontieu, B., Erdelyi, R., & James, S.P., 2004, Nature, 430, 536 CrossRef
De Pontieu, B., McIntosh, S.W., Carlsson, M., et al., 2007, Science, 318, 1574 CrossRef
De Pontieu, B., McIntosh, S., Hansteen, V.H., et al., 2007, PSAJ, 59, S699
Filippov, B., & Koutchmy, S., 2000, Solar Phys., 195, 311 CrossRef
Filippov, B., Koutchmy, S., & Vilinga, J., 2007, A&A, 464, 1119
Georgakilas, A.A., Koutchmy, S., & Alissandrakis, C.E., 1999, A&A, 341, 610
Kudoh, T., & Shibata, K., 1999, ApJ, 514, 493 CrossRef
Kukhianidze, V., Zagarashvili, T.V., & Khutsishvili, E., 2006, A&A, 449, L35
Kulidzanishvili, V.I., & Nikolsky, G.M., 1978, Solar Phys., 59, 21 CrossRef
Lorrain, P., & Koutchmy, S., 1996, Solar Phys., 165, L115 CrossRef
Sterling, H.C., 2000, Solar Phys., 196, 79 CrossRef
Suematsu, Y., Wang, H., & Zirin, H., 1995, ApJ, 450, 411 CrossRef
Tavabi, E., Koutchmy, S., & Ajabshirzadeh, A., 2011, New Astron., 16, 296 CrossRef
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al., 2008, The Solar Optical Telescope for the Hinode Mission : An Overview, Solar Physics, 249, 167 CrossRefGoogle Scholar
Torrence, C., & Compo, G.P., 1998, Bull. Amer. Meteor. Soc., 79, 61 2.0.CO;2>CrossRef
Xia, L.D., Popescu, M.D., Doyle, J.G., & Giannikakis, J., 2005, A&A, 438, 1115 PubMed
Zaqarashvili, T.V., Kukhianidze, V., Khutsishvili, E., & Ramishvili, G., 2007, A&A, 474, 627
Zaqarashvili, T.V., Kukhianidze, V., & Khodachenko, M.L., 2010, MNRAS, 404, L74 CrossRef