Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T10:37:54.381Z Has data issue: false hasContentIssue false

Solar Astrophysics, Interferometry,and Coronagraphy at Dome C/Concordia

Published online by Cambridge University Press:  13 November 2008

L. Damé
Affiliation:
Service d'Aéronomie du CNRS, BP. 3, 91371 Verrièrres-le-Buisson Cedex, France e-mail: [email protected] LESIA, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
J.-P. Amans
Affiliation:
GEPI, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
J.-L. Dournaux
Affiliation:
GEPI, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France
S. Koutchmy
Affiliation:
Institut d'Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France
P. Lamy
Affiliation:
Laboratoire d'Astrophysique de Marseille, BP. 8, 13376 Marseille, France
A. Preumont
Affiliation:
Active Structures Laboratory, Université Libre de Bruxelles, CP 165/42, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
Get access

Abstract

Excellent seeing, coronal conditions, and very low IR thermal background are qualities of the Dome C/Concordia station site that will allow unique solar astrophysics science. We review the science case for inner corona observations (onset of the coronal heating mechanism still poorly understood) and the promises of high angular resolution to disentangle the possible mechanisms at work between waves, convection, and reconnection in this particularly magnetically structured solar atmosphere between the high chromosphere and inner corona. For coronagraphy, IR and high resolution possibilities, Dome C is a case by itself between classical ground-based sites and space opportunities. Telescopes from 50 cm (coronagraphy oriented) to 4 m (full high resolution advantage including IR access) are proposed to benefit from these remarkable observing capabilities. Using 3 × Ø50 cm off-axis telescopes, we first propose a medium size facility (1.4 m equivalent telescope) for very high resolution access, ADSIIC (Antarctica Demonstrator of Solar Interferometric Imaging & Coronagraphy), before the ultimate 9-telescope Solar Facility equivalent to a 4 m diameter telescope: A-FOURMI (Antarctica 4 m Interferometer). Finally, 30 m tower designs and their logistics using standard containers and elementary elements of 6 m maximum length, are presented and discussed. These towers are indeed of general interest also for the other optical and IR telescopes intended for Dome C/Concordia, allowing to get over most of the turbulent ground layer and to reach the best possible permanent seeing conditions (better than half an arcsec).

Type
Research Article
Copyright
© EAS, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aristidi, E., et al., 2005, EAS Publ. Ser., 14, 13 CrossRef
Aristidi, E., et al., 2005, A&A, 444, 651
Arnaud, J., Faurobert, M., & Fossat, E., 2007a, Mem. S.A.It, 78, 105
Arnaud, J., Faurobert, M., Grec, G., & Renaud, C., 2007b, EAS Publ. Ser., 25, 81 CrossRef
Damé, L., 2006, A Very High Resolution Vision for Solar Physics: Interferometry & Spectral-imaging in the Far Ultraviolet, in “Proceedings: SOHO17 – 10 Years of SOHO and Beyond”, ESA SP-617
Damé, L., Cladé, S., & Zhao, B., 2004, Solar Full Field Interferometric Imaging with 3 Telescopes, “In Proceedings: 5th International Conference on Space Optics”, ESA-SP 554, 373
Damé, L., Derrien, M., Kozlowski, M., Perrot, S., & Preumont, A., 2002, Technologies for Solar Interferometry in Space, in “Proceedings: Current and Future High Resolution In-situ and Remote Sensing Solar Physics Missions, ed. L. Damé & E. Marsch, Adv. Space. Res., 29, 2061 CrossRef
Denker, C., & Strassmeier, K.G., 2008, EAS Publ. Ser., 33, 97 CrossRef
Denker, C., Gary, D.E., & Rimmele, T.R., 2007, in “Proceedings: Modern Solar Facilities – Advanced Solar Science”, ed. F. Kneer, K.G. Puschmann & D. Wittmann, 31
Denker, C., et al., 2005, Solar Phys., 227, 217 CrossRef
Epchtein, J., 2005, EAS Publ. Ser., 14, 193 CrossRef
Erdélyi, R., 2006, Magnetic seismology of the lower solar atmosphere, ESA SP-624
Erdélyi, R., 2005, Heating the Solar Corona: Review, PADEU, 15, 719
Erdélyi, R., Malins, C., Toth, G., & De Pontieu, B., 2007, A&A, 467, 1299
Fossat, E., 2005, EAS Publ. Ser., 14, 1 CrossRef
Hammerschlag, R.H., Bettonvil, F.C.M., Jagers, A.P.L., & Nielson, G., 2007, EAS Publ. Ser., 25, 265 CrossRef
Judge, P.G., Low, B.C., & Casini, R., 2006, ApJ, 651, 1229 CrossRef
Kellerer, A., Sarazin, M., Butterley, T., & Wilson, R., 2007, Appl. Opt., 48, 4754 CrossRef
Klimchuk, J., 2006, Solar Physics, 234, 41 CrossRef
Klimchuk, J., & Lopez Fuentes, M.C., 2006, Coronal Heating, AIP Conference Proc., 848, 55 CrossRef
Koutchmy, S., et al. (including Damé, L.), 2006, in “Proceedings: SF2A 2006”, ed. D., Barret, F., Casoli, T., Contini, G., Lagache, A., Lecavelier, & L., Pagani, 237–238
Koutchmy, S., et al., 2004, A&A, 420, 709
Lawrence, J.S., et al., 2004, Nature, 431, 278 CrossRef
Lin, H., & Penn, M.J., 2004, PASP, 116, 652 CrossRef
Marsch, E., 1999, Astr. Sp. Sci., 264, 63 CrossRef
Peter, H., Gudiksen, B., & Nordlund, A., 2005, Coronal heating through braiding of magnetic field lines synthetized coronal EUV emission and magnetic structure, ESA SP596, 14
Priest, E.R., 1999, Astr. Sp. Sci., 264, 77 CrossRef
Strassmeier, K.G., et al. (including Damé, L.), 2007, Astron. Natchr., 328, 451
Vernin, J., et al., 2007, EAS Publ. Ser., 25, 23 CrossRef
Vivès, , et al., 2007, SPIE, 6689, 0F
Wagner, J., et al., 2006, SPIE, 6267, 09