Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T04:41:49.607Z Has data issue: false hasContentIssue false

SGM to solve NMF – Application to Hyperspectral Data

Published online by Cambridge University Press:  13 March 2013

C. Theys
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, CNRS, Nice, France
H. Lantéri
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, CNRS, Nice, France
C. Richard
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, CNRS, Nice, France
Get access

Abstract

This article deals with the problem of minimization of a general cost function under non-negativity and flux conservation constraints. The proposed algorithm is founded on the Split Gradient Method (SGM) adapted here to solve the Non Negative Matrix Factorization (NMF). We show that SGM can be easily regularized, allowing to introduce some physical constraints. Finally, to validate the algorithm, we propose an example of application to hyperspectral data unmixing.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, C.I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (New York: Plenum Publishing Co.)
Cichocki, A., Zdunek, R., & Amari, S., 2006, Csiszár’s Divergences for Non-negative Matrix Factorization: Family of New Algorithms, Ser. Lectures Notes in Computer Science (Springer Berlin/ Heidelberg), Vol. 3889
Daube-Witherspoon, M.E., & Muehllehner, G., 1986, IEEE Trans. Medical Imaging, 5, 61 CrossRef
Dempster, A.D., Laird, N.M., & Rubin, D.B., 1977, J. R. Stat. Soc., B 39, 1
Desidera, G., Anconelli, B., Bertero, M., Boccacci, P., & Carbillet, M., 2006, “Application of iterative blind deconvolution to the reconstruction of lbt linc-nirvana images”, A&A
Févotte, C., Bertin, N., & Durrieu, J.-L., 2009, “Nonnegative matrix factorization with the itakura-saito divergence, with application to music analysis”, Neural Computation
Hoyer, P.O., 2004, J. Machine Learning, 5, 1457
Landgrebe, D.A., 2003, Signal Theory Methods in Multispectral Remote Sensing (New York: Wiley)
Lantéri, H., Roche, M., Cuevas, O., & Aime, C., 2001, Signal Processing, 54, 945 CrossRef
Lantéri, H., Roche, M., & Aime, C., 2002, Inverse Probl., 18, 1397 CrossRef
Lantéri, H., Theys, C., Benvenuto, F., & Mary, D., 2009, “Méthode algorithmique de minimisation de fonctions d’écart entre champs de données, application à la reconstruction d’images astrophysiques”, in GRETSI
Lantéri, H., Aime, C., Beaumont, H., & Gaucherel, P., 1994, “Blind deconvolution using the richardson-lucy algorithm”, in European Symposium on Satellite and Remote Sensing
Lantéri, H., Theys, C., & Richard, C., 2011, “Regularized split gradient method for non negative matrix factorization”, in ICASSP, Prague
Lantéri, H., Theys, C., & Richard, C., 2011, “Nonnegative matrix factorization with regularization and sparsity-enforcing terms”, in CAMSAP, Porto Rico
Lee, D.D., & Seung, H.S., 2001, Adv. NIPS, 13, 556
Lucy, L.B., 1974, AJ, 79, 745 CrossRef
Richardson, W.H., 1972, J. Opt. Soc. Am., 1, 55 CrossRef
RSI (Research Systems Inc.), 2003, ENVI User’s guide Version 4.0, Boulder, CO 80301 USA, Sep.
Theys, C., Dobigeon, N., Tourneret, J.-Y., & Lantéri, H., 2009, “Linear unmixing of hyperspectral images using a scaled gradient method”, in SSP, Cardiff