Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:24:09.587Z Has data issue: false hasContentIssue false

Restoration of Hyperspectral Astronomical Data with Spectrally Varying Blur

Published online by Cambridge University Press:  13 March 2013

F. Soulez
Affiliation:
Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon; École Normale Supérieure de Lyon, 69007 Lyon, France
E. Thiébaut
Affiliation:
Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon; École Normale Supérieure de Lyon, 69007 Lyon, France
L. Denis
Affiliation:
Université de Lyon, 42023 Saint-Etienne, France, CNRS, UMR 5516, Laboratoire Hubert Curien, 42000 Saint-Etienne, France, Université de Saint-Etienne, Jean Monnet, 42000 Saint-Etienne, France
Get access

Abstract

In this paper we present a method for hyper-spectral image restoration for integral field spectrographs (IFS) data. We specifically address two topics: (i) the design of a fast approximation of spectrally varying operators and (ii) the comparison between two kind of regularization functions: quadratic and spatial sparsity functions. We illustrate this method with simulations coming from the Multi Unit Spectroscopic Explorer (MUSE) instrument. It shows the clear increase of the spatial resolution provided by our method as well as its denoising capability.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akgun, T., Altunbasak, Y., & Mersereau, R., 2005, Image Proc., IEEE Trans., 14, 1860 Google Scholar
Benazza-Benyahia, A., & Pesquet, J.C., 2006, in European Signal and Image Processing Conference, EUSIPCO’06, 5, 4 (Firenze, Italy) Google Scholar
Bertero, M., & Boccacci, P., 1998, Introduction to Inverse Problems in Imaging (Taylor & Francis)
Bobin, J., Moudden, Y., Starck, J.L., & Fadili, J., 2009, in Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf. Ser., 7446, 42
Bongard, S., Thiébaut, E., Soulez, F., & Pecontal, E., 2009, in Proceedings of the First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS’09), cdrom (Grenoble, France)
Bongard, S., Soulez, F., Thiébaut, É., & Pecontal, E., 2011, MNRAS, 418, 258 CrossRef
Bourguignon, S., Mary, D., & Slezak, É., 2011a, Statistical Methodology
Bourguignon, S., Mary, D., & Slezak, É., 2011b, Selected Topics Signal Proc., IEEE J., 5, 1002 Google Scholar
Courbin, F., Magain, P., Kirkove, M., & Sohy, S., 2000, ApJ, 529, 1136 CrossRef
Denis, L., Thiébaut, E., & Soulez, F., 2011, in 18th IEEE International Conference on Image Processing (Bruxelles, France), 2873
Duijster, A., Scheunders, P., & Backer, S.D., 2009, IEEE Trans. Geosc. Remote Sens., 47, 3892 CrossRef
Fornasier, M., & Rauhut, H., 2008, SIAM J. Numer. Anal., 46, 577 CrossRef
Galatsanos, N., & Chin, R., 1989, IEEE Trans. Acoustics, Speech, Signal Proc., 37, 415 Google Scholar
Galatsanos, N., Katsaggelos, A., Chin, R., & Hillery, A., 1991, IEEE Trans. Signal Proc., 39, 2222 CrossRef
Gaucel, J.M., Guillaume, M., & Bourennane, S., 2006, European Signal Processing Conference
Henault, F., Bacon, R., Bonneville, C., et al., 2003, Proc. SPIE, 4841, 1096 CrossRef
Hunt, B.R., & Kubler, O., 1984, IEEE Trans. Acoustics, Speech, Signal Proc., 32, 592 Google Scholar
Katsaggelos, A., Lay, K., & Galatsanos, N., 1993, Image Proc., IEEE Trans., 2, 417 Google Scholar
Kowalski, M., & Torrésani, B., 2009, Signal, Image Video Proc., 3, 251 CrossRefGoogle Scholar
Lucy, L., & Walsh, J., 2003, AJ, 125, 2266 CrossRef
Mugnier, L., Fusco, T., & Conan, J.-M., 2004, J. Opt. Soc. Am. A, 21, 1841 CrossRef
Neelamani, R., Choi, H., & Baraniuk, R., 2004, IEEE Trans. Signal Process., 52, 418 CrossRef
Nocedal, J., & Wright, S., 1999, Numerical optimization (Springer)
Rodet, T., Orieux, F., Giovannelli, J., & Abergel, A., 2008, IEEE J. Selected Topics Signal Proc., 2, 802 CrossRef
Soulez, F., Bongard, S., Thiébaut, E., & Bacon, R., 2011, in Proceedings of the Third IEEE-GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, cdrom (Lisbonne, Portugal)
Soulez, F., Thiébaut, E., Gressard, A., Dauphin, R., & Bongard, S., 2008, Proceeding of the 16th European Signal Processing Conference EUSIPCO (Lausanne, Suisse)
Tekalp, M., & Pavlovic, G., 1990, Signal Proc., 19, 221 CrossRef
Thiébaut, E., 2002, ed. J.-L. Starck, Astron. Data Anal. II., 4847, 174 Google Scholar
Thiébaut, É., & Soulez, F., 2012, in SPIE Astronomical Telescopes+ Instrumentation, 84451C, International Society for Optics and Photonics