Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:26:30.483Z Has data issue: false hasContentIssue false

Regression Models: A Brief Introduction

Published online by Cambridge University Press:  23 January 2015

G. Grégoire*
Affiliation:
Laboratory LJK, Grenoble University, BP. 53, 38041 Grenoble Cedex 09, France
Get access

Abstract

This brief introduction, without pretension, aims to give some help to non-specialists of statistics to find their way in regression models. What are the basic notions of a regression? A regression model can be linear, generalized linear, nonlinear. Statisticians speak also of parametric, semiparametric, nonparametric regression models. We hope that what is behind these terms will be made clearer after the reading of chapters devoted to simple linear regression, multiple linear regression, logistic regression, survival data and regression, kernel methods... But it can be interesting to have a global view, before reading these chapters, on a rather wide range of regression methods, and to have a first sight on what type of question a particular regression model is answering and what can be expected from such a model on the ground of modelling the data we have in hand.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)