Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T22:50:54.343Z Has data issue: false hasContentIssue false

Property of emerging flux regions and corresponding response of the upper atmosphere

Published online by Cambridge University Press:  27 June 2012

J. Zhao
Affiliation:
Purple Mountain Observatory, Nanjing 210008, China Key Laboratory of Dark Matter and Space Astronomy, CAS
H. Li
Affiliation:
Purple Mountain Observatory, Nanjing 210008, China Key Laboratory of Dark Matter and Space Astronomy, CAS
Get access

Abstract

Using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we study the property of emerging flux regions and the response of upper solar atmosphere to the flux emergence. Property of the EFRs is delineated by the total emerged flux, flux growth rate, the maximum area, the duration of the emergence and the separation speed of the opposite polarities. The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures). The total emerged fluxes are in the range of (0.48−11.2) × 1019Mx while the maximum area ranges from 17 to 182 arcsec2. The durations of the emergence are between 1 and 12 hours and positively correlated to both the total emerged flux and the maximum area. The maximum distances between the opposite polarities are 7−25 arcsec and the separation speeds are from 0.05 to 1.08 km s-1, negatively correlated to the duration. The derived flux growth rates are (0.1−1.1)  × 1019Mx/hr, which are positively correlated to the total emerging flux. The upper atmosphere responds to the flux emergence in the 1600 Å chromospheric line first, and then tens and hundreds of seconds later, in coronal lines, such as the 171 Å (T = 105.8K) and 211 Å (T = 106.3K) lines almost simultaneously, suggesting the successively heating of atmosphere from the chromosphere to the corona.

Type
Research Article
Copyright
© EAS, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasubramaniam, K.S., 2001, ApJ, 557, 366 CrossRef
Dubey, G., van der Holst, B., & Poedts, S., 2006, A&A, 459, 927
Kosugi, T., Matsuzaki, K., Sakao, T., et al., 2007, Solar Phys., 243, 3 CrossRef
Kubo, M., Shimizu, T., & Lites, B.W., 2003, ApJ, 595, 465 CrossRef
Lemen, J.R., Title, A.M., Akin, D.J., et al., 2011, Solar Phys., in press
Li, H., Sakurai, T., Ichimito, K., et al., 2007, PASJ, 59, 643
Li, J.-W., & Li, H., 2010, Research Astron. Astrophys., 10, 696 CrossRef
Mein, N., Schmieder, B., DeLuca, E.E., et al., 2001, ApJ, 556, 438 CrossRef
Otsuji, K., Kitai, R., Ichimoto, K., & Shibata, K., 2011, PASJ, 63, 1047
Otsuji, K., Shibata, K., Kitai, R., et al., 2007, PASJ, 59, 649
Pesnell, W.D., Thompson, B.J., & Chamberlin, P.C., 2011, Solar Phys., in press
Sakajiri, T., Brooks, D.H., Yamamoto, T., et al., 2004, ApJ, 616, 578 CrossRef
Schmieder, B., Aulanier, G., Démoulin, P., et al., 1997, A&A, 325, 1213
Schmieder, B., Rust, D.M., Georgoulis, M.K., Démoulin, P., & Bernasconi, P.N., 2004, ApJ, 601, 530 CrossRef
Schou, J., Scherrer, P.H., Bush, R.I., et al., 2011, Solar Phys., in press
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al., 2008, Solar Phys., 249, 167 CrossRef
Wang, H., Yan, Y., & Sakurai, T., 2001, Solar Phys., 201, 323 CrossRef