Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T19:05:34.835Z Has data issue: false hasContentIssue false

Modelling the Evolution of Planets in Disks

Published online by Cambridge University Press:  20 January 2011

W. Kley*
Affiliation:
Institute of Astronomy & Astrophysics, University of Tübingen, Germany
Get access

Abstract

To explain important properties of extrasolar planetary systems (e.g. close-in hot Jupiters, resonant planets) an evolutionary scenario which allows for radial migration of planets in disks is required. During their formation protoplanets undergo a phase in which they are embedded in the disk and interact gravitationally with it. This planet-disk interaction results in torques (through gravitational forces) acting on the planet that will change its angular momentum and result in a radial migration of the planet through the disk. To determine the outcome of this very important process for planet formation, dedicated high resolution numerical modeling is required. This contribution focusses on some important aspects of the numerical approach that we found essential for obtaining successful results. We specifically mention the treatment of Coriolis forces, Cartesian grids, and the FARGO method.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Baruteau, C., & Masset, F, 2008, AJ, 672, 1054 CrossRef
Bate, M.R., Lubow, S.H., Ogilvie, G.I., & Miller, K.A., 2003, Monthly Not. Roy. Ast. Soc., 341, 213 CrossRef
Boss, A.P., 1998, AJ, 503, 923 CrossRef
Brandenburg, A., & Dobler, W., 2002, Comp. Phys. Comm., 147, 471 CrossRef
Bryden, G., Chen, X., Lin, D.N.C., Nelson, R.P., & Papaloizou, J.C.B., 1999, AJ, 514, 344 CrossRef
Crida, A., & Morbidelli, A., 2007, Monthly Not. Roy. Ast. Soc., 377, 1324 CrossRef
Crida, A., Morbidelli, A., & Masset, F., 2006, Icarus, 181, 587 CrossRef
D’Angelo, G., Henning, T., & Kley, W., 2002, A&A, 385, 647
D’Angelo, G., Kley, W., & Henning, T., 2003, AJ, 586, 540 CrossRef
de Val-Borro, M., Edgar, R.G., Artymowicz, P., et al., 2006, Monthly Not. Roy. Ast. Soc., 370, 529 CrossRef
Goldreich, P., & Tremaine, S., 1980, AJ, 241, 425 CrossRef
Kley, W., 1989, A&A, 208, 98
Kley, W., 1998, A&A, 338, L37
Kley, W., 1999, Monthly Not. Roy. Ast. Soc., 303, 696 CrossRef
Kley, W., & Crida, A., 2008, A&A, 487, L9
Kley, W., D’Angelo, G., & Henning, T., 2001, AJ, 547, 457 CrossRef
Lin, D.N.C., & Papaloizou, J., 1986a, AJ, 307, 395 CrossRef
Lin, D.N.C., & Papaloizou, J.C.B., 1986b, AJ, 309, 846 CrossRef
Lubow, S.H., Seibert, M., & Artymowicz, P., 1999, AJ, 526, 1001 CrossRef
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N., 2008 [ArXiv e-prints]
Masset, F., 2000a, A&AS, 141, 165
Masset, F.S., 2000b, Astron. Soc. Pacific Conf. Ser., 219, 75
Masset, F.S., 2002, A&A, 387, 605
Masset, F.S., D’Angelo, G., & Kley, W., 2006, AJ, 652, 730 CrossRef
Mizuno, H., 1980, Progr. Theoret. Phys., 64, 544 CrossRef
Nelson, R.P., & Papaloizou, J.C.B., 2003, Monthly Not. Roy. Ast. Soc., 339, 993 CrossRef
Nelson, R.P., Papaloizou, J.C.B., Masset, F.S., & Kley, W., 2000, Monthly Not. Roy. Ast. Soc., 318, 18 CrossRef
Paardekooper, S.-J., & Mellema, G., 2006, A&A, 459, L17
Paardekooper, S.-J., & Mellema, G., 2008, A&A, 478, 245
Pepliński, A., Artymowicz, P., & Mellema, G., 2008, Monthly Not. Roy. Ast. Soc., 386, 164 CrossRef
Shu, C.-W., & Osher, S., 1988, J. Comp. Phys., 77, 439 CrossRef
Udry, S., Fischer, D., & Queloz, D., 2007, in Protostars and Planets, ed. V B. Reipurth, D. Jewitt, & K. Keil, 685
Ward, W.R., 1997, Icarus, 126, 261 CrossRef
Winters, W.F., Balbus, S.A., & Hawley, J.F., 2003, AJ, 589, 543 CrossRef
Zhang, H., Yuan, C., Lin, D.N.C., & Yen, D.C.C., 2008, AJ, 676, 639 CrossRef