Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T04:55:56.014Z Has data issue: false hasContentIssue false

MCMC Algorithms for Supervised and Unsupervised Linear Unmixing of Hyperspectral Images

Published online by Cambridge University Press:  13 March 2013

N. Dobigeon
Affiliation:
University of Toulouse, IRIT/INP-ENSEEIHT, 2 rue Camichel, BP. 7122, 31071 Toulouse Cedex 7, France
S. Moussaoui
Affiliation:
IRCCyN - CNRS UMR 6597, ECN, 1 rue de la Noë, BP. 92101, 44321 Nantes Cedex 3, France
M. Coulon
Affiliation:
University of Toulouse, IRIT/INP-ENSEEIHT, 2 rue Camichel, BP. 7122, 31071 Toulouse Cedex 7, France
J.-Y. Tourneret
Affiliation:
University of Toulouse, IRIT/INP-ENSEEIHT, 2 rue Camichel, BP. 7122, 31071 Toulouse Cedex 7, France
A. O. Hero
Affiliation:
University of Michigan, Department of EECS, 1301 Beal Avenue, Ann Arbor, 48109-2122, USA
Get access

Abstract

In this paper, we describe two fully Bayesian algorithms that have been previously proposed to unmix hyperspectral images. These algorithms relies on the widely admitted linear mixing model, i.e. each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra. First, the unmixing problem is addressed in a supervised framework, i.e., when the endmembers are perfectly known, or previously identified by an endmember extraction algorithm. In such scenario, the unmixing problem consists of estimating the mixing coefficients under positivity and additivity constraints. Then the previous algorithm is extended to handle the unsupervised unmixing problem, i.e., to estimate the endmembers and the mixing coefficients jointly. This blind source separation problem is solved in a lower-dimensional space, which effectively reduces the number of degrees of freedom of the unknown parameters. For both scenarios, appropriate distributions are assigned to the unknown parameters, that are estimated from their posterior distribution. Markov chain Monte Carlo (MCMC) algorithms are then developed to approximate the Bayesian estimators.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akgun, T.,Altunbasak, Y., &Mersereau, R.M., 2005, IEEE Trans. Image Process., 14, 1860 CrossRef
Altmann, Y.,Halimi, A.,Dobigeon, N., &Tourneret, J.-Y., 2012, IEEE Trans. Image Process., 21, 3017 CrossRef
Arngren, M.,Schmidt, M.N., &Larsen, J., 2011, J. Signal Proc. Syst., 65, 479 CrossRef
Berman, M.,Kiiveri, H.,Lagerstrom, R.,Ernst, A.,Dunne, R., &Huntington, J.F., 2004, IEEE Trans. Geosci. Remote Sens., 42, 2085 CrossRef
Bioucas-Dias, J.M.,Plaza, A.,Dobigeon, N., et al., 2012, IEEE J. Sel. Topics Appl. Earth Observations Remote Sens., 5, 354 CrossRef
Blumensath, T., &Davies, M.E., 2007, IEEE Trans. Signal Process., 55, 4474 CrossRef
Boardman, J., 1993, in Summaries 4th Annu. JPL Airborne Geoscience Workshop, Vol. 1 (JPL Pub., Washington, D.C.), 11
Bowles, J.H., Palmadesso, P.J., Antoniades, J.A., Baumback, M.M., & Rickard, L.J., 1995, ed. M. Strojnik & B.F. Andresen, Infrared Spaceborne Remote Sensing III, SPIE, 2553, 148
Chang, C.-I., 2003, Hyperspectral Imaging: Techniques for Spectral detection and classification (Kluwer, New York)
Chang, C.-I., &Ji, B., 2001, IEEE Trans. Geosci. Remote Sensing, 44, 378 CrossRef
Chen, F.W., 2005, IEEE Geosci. Remote Sensing Lett., 2, 64 CrossRef
Chen, M.-H., &Deely, J.J., 1996, J. Agricultural, Biological Environmental Stat., 1, 467 CrossRefGoogle Scholar
Christophe, E.,Léger, D., &Mailhes, C., 2005, IEEE Trans. Geosci. Remote Sensing, 43, 2103 CrossRef
Craig, M., 1994, IEEE Trans. Geosci. Remote Sens., 542
Dobigeon, N., &Achard, V., 2005, ed. L. Bruzzone,Image and Signal Processing for Remote Sensing XI, SPIE, 5982, 335 Google Scholar
Dobigeon, N.,Moussaoui, S.,Coulon, M.,Tourneret, J.-Y., &Hero, A.O., 2009, IEEE Trans. Signal Process., 57, 4355 CrossRef
Dobigeon, N., & Tourneret, J.-Y., 2007, Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex, Technical report, IRIT/ENSEEIHT/TéSA, France
Dobigeon, N., Tourneret, J.-Y., & Hero III, A.O., 2008a, in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP, Las Vegas, USA), 3433
Dobigeon, N.,Tourneret, J.-Y., &Chang, C.-I., 2008b, IEEE Trans. Signal Process., 56, 2684 CrossRef
Dobigeon, N.,Tourneret, J.-Y., &Davy, M., 2007, IEEE Trans. Signal Process., 55, 1251 CrossRef
Eches, O.,Dobigeon, N., &Tourneret, J.Y., 2011, IEEE Trans. Geosci. Remote Sensing, 49, 4239 CrossRef
Févotte, C., &Godsill, S.J., 2006, IEEE Trans. Audio, Speech, Language Process., 14, 2174 Google Scholar
Halimi, A.,Altmann, Y.,Dobigeon, N., &Tourneret, J.-Y., 2011, IEEE Trans. Geosci. Remote Sensing, 49, 4153 CrossRef
Hapke, B.W., 1981, J. Geophys. Res., 86, 3039 CrossRef
Heinz, D.C., &Chang, C.-I., 2001, IEEE Trans. Geosci. Remote Sens., 29, 529 CrossRef
Hyvärinen, A., Karhunen, J., & Oja, E., 2001, Independent Component Analysis (John Wiley, New York)
Jackson, Q., &Landgrebe, D.A., 2002, IEEE Trans. Geosci. Remote Sens., 40, 1082 CrossRef
Jeffreys, H., 1961, Theory of Probability, 3 edition (Oxford University Press, London)
Jet Propulsion Lab. (JPL), 2006, AVIRIS Free Data
Johnson, P.E.,Smith, M.O.,Taylor-George, S., &Adams, J.B., 1983, J. Geophys. Res., 88, 3557 CrossRef
Kay, S.M., 1988, Modern spectral estimation (Prentice Hall)
Keshava, N., &Mustard, J.F., 2002, IEEE Signal Process. Mag., 19, 44 CrossRef
Manolakis, D.,Siracusa, C., &Shaw, G., 2001, IEEE Trans. Geosci. Remote Sens., 39, 1392 CrossRef
Mittelman, R., Dobigeon, N., & HeroIII, A.O., 2012, IEEE Trans. Signal Process., 60, 1656
Moussaoui, S.,Brie, D.,Mohammad-Djafari, A., &Carteret, C., 2006, IEEE Trans. Signal Process., 54, 4133 CrossRef
Nascimento, J.M., &Bioucas-Dias, J.M., 2005a, IEEE Trans. Geosci. Remote Sens., 43, 898 CrossRef
Nascimento, J.M.P., &Bioucas-Dias, J.M., 2005b, IEEE Trans. Geosci. Remote Sens., 43, 175 CrossRef
Paatero, P., &Tapper, U., 1994, Environmetrics, 5, 111 CrossRef
Plaza, J., Pérez, R., Plaza, A., Martínez, P., & Valencia, D., 2005, ed. J.O. Jensen & J.-M. Thériault, Chemical and Biological Standoff Detection III, SPIE, 5995, 79
Punskaya, E.,Andrieu, C.,Doucet, A., &Fitzgerald, W., 2002, IEEE Trans. Signal Process., 50, 747 CrossRef
Rellier, G.,Descombes, X.,Falzon, F., &Zerubia, J., 2004, IEEE Trans. Geosci. Remote Sens., 42, 1543 CrossRef
Robert, C.P., 1995, Stat. Comput., 5, 121 CrossRef
Robert, C.P., 2007, The Bayesian Choice: from Decision-Theoretic Motivations to Computational Implementation, 2 edition (Springer Texts in Statistics, Springer-Verlag, New York)
Robert, C.P., & Casella, G., 1999, Monte Carlo Statistical Methods (Springer-Verlag, New York)
RSI (Research Systems Inc.), 2003, ENVI User’s guide Version 4.0, Boulder, CO 80301 USA
Tang, X., &Pearlman, W.A., 2004, Proc. IEEE Int. Conf. Image Proc. (ICIP), 5, 3283
Theys, C., Dobigeon, N., Tourneret, J.-Y., & Lantéri, H., 2009, in Proc. IEEE-SP Workshop Stat. and Signal Processing (SSP) (Cardiff, UK), 729
Tu, T.M.,Chen, C.H., &Chang, C.-I., 1998, IEEE Trans. Geosci. Remote Sens., 36, 171
Winter, M., 1999, in Proc. 13th Int. Conf. Appl. Geologic Remote Sensing, 2, 337, Vancouver