Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T06:52:53.621Z Has data issue: false hasContentIssue false

Linear Regression in High Dimension and/or for Correlated Inputs

Published online by Cambridge University Press:  23 January 2015

J. Jacques
Affiliation:
Université Lille 1 & CNRS & Inria, France
D. Fraix-Burnet
Affiliation:
Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), France
Get access

Abstract

Ordinary least square is the common way to estimate linear regression models. When inputs are correlated or when they are too numerous, regression methods using derived inputs directions or shrinkage methods can be efficient alternatives. Methods using derived inputs directions build new uncorrelated variables as linear combination of the initial inputs, whereas shrinkage methods introduce regularization and variable selection by penalizing the usual least square criterion. Both kinds of methods are presented and illustrated thanks to the R software on an astronomical dataset.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanton, M.R., & Hogg, D.W., 2005, AJ, 129, 2562CrossRef
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R., 2004, Ann. Stat., 35, 2358CrossRef
Hastie, T., Tibshirani, R., & Friedman, F., 2009, The Elements of Statistical Learning, Data Mining, Inference and Prediction, 2nd edition (Springer)Google Scholar
Hoerl, A.E., & Kennard, R., 1970, Ridge Regr.: Biaised Estim. Nonorthog. Probl., Technom., 12, 55
Lawless, J.F., & Wang, P., 1976, Comm. Stat., Theory Meth., 14, 1589
Tibshirani, R., 1996, J. Royal Stat. Soc. Series B, 58, 267
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K., 2005, J. Royal Stat. Soc. Series B, 67, 91CrossRef
Yengo, L., Jacques, J., & Biernacki, C., 2014, J. Soc. Française Stat. (in press)
Yuan, M., & Lin, Y., 2007, J. Royal Stat. Soc. Series B, 68, 49CrossRef
Zhou, H., & Hastie, T., 2006, J. Royal Stat. Soc. Series B, 101, 1418