Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:31:25.542Z Has data issue: false hasContentIssue false

Laboratory Astrophysics of Dust

Published online by Cambridge University Press:  25 November 2011

C. Jäger
Affiliation:
Max-Planck-Institute for Astronomy, Heidelberg and Institute of Solid State Physics, Friedrich Schiller University, Helmholtzweg 3, 07743 Jena, Germany
H. Mutschke
Affiliation:
Astrophysical Institute and University Observatory, Friedrich Schiller University, Schillergässchen 2-3, 07745 Jena, Germany
T. Henning
Affiliation:
Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
Get access

Abstract

Infrared spectroscopy is the best astronomical tool for studying the composition of cosmic dust. Thanks to the Herschel satellite, dust properties from the FIR to mm wavelength range will be sampled in different astrophysical environments. In the laboratory, the study of the temperature and structural dependence of FIR absorption of cosmic dust analogs including agglomeration is essential to interpret observational spectra. For crystalline materials, FIR single phonon bands are temperature dependent due to the anharmonicity of the vibrational potentials. This strong temperature dependence of the FIR bands’ positions can be used as a thermometer of the dust temperature. In amorphous material, the FIR absorption is dominated by disorder-induced single phonon processes and in the submillimeter and millimeter range by highly temperature-dependent low energy processes, e.g. tunneling transitions in two-level systems. The effect of these processes on the FIR absorptivity in amorphous silicates will be demonstrated.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agladze, N.I., Sievers, A.J., Jones, S.A., Burlitch, J.M., & Beckwith, S.V.W., 1996, ApJ, 462, 1026 CrossRef
Boudet, N., Mutschke, H., Nayral, C., et al., 2005, ApJ, 633, 272 CrossRef
Bowey, J.E., & Adamson, A.J., 2002, MNRAS, 334, 94 CrossRef
Chihara, H., Koike, C., Tsuchiyama, A., Tachibana, S., & Sakamoto, D., 2002, A&A, 391, 267
Désert, F.X., Macías-Pérez, J., Mayet, F., et al., 2008, A&A, 481, 411
Dupac, X., Bernard, J.-P., Boudet, N., et al., 2003, A&A, 404, L11
Hagenmayer, R.M., Friede, B., & Jansen, M., 1998, J. Non-Cryst. Solids, 226, 225 CrossRef
Henning, T., & Mutschke, H., 1997, A&A, 327, 743
Hofmeister, A.M., & Bowey, J.E., 2006, MNRAS, 367, 577 CrossRef
Hummel, S., Mutschke, H., Jäger, C., & Neuhäuser, R., 2008, in preparation
Jäger, C., Dorschner, J., Mutschke, H., Posch, T., & Henning, T., 2003, A&A, 408, 193
Jäger, C., Molster, F., Dorschner, J., Henning, T.H.M., & Waters, L., 1998, A&A, 339, 904
Kemper, F., Jäger, C., Waters, L.B.F.M., et al., 2002, Nature, 415, 295 CrossRef
Koike, C., Hasegawa, H., & Hattori, T., 1982, ApSS, 88, 89
Koike, C., Mutschke, H., Suto, H., et al., 2006, A&A, 449, 583
Koike, C., & Shibai, H., 1990, MNRAS, 246, 332
Kramer, C., Buchbender, C., Xilouris, E.M., et al., 2010, A&A, 518, L67
Malfait, K., Waelkens, C., Bouwman, J., de Koter, A., & Waters, L.B.F.M., 1999, A&A, 345, 181
Mennella, V., Brucato, J., Colangeli, L., et al., 1998, ApJ, 496, 1058 CrossRef
Meny, C., Gromov, V., Boudet, N., et al., 2007, A&A, 468, 171
Mutschke, H., Zeidler, S., Posch, T., et al., 2008, A&A, 492, 117
Posch, T., Mutschke, H., Kerschbaum, F., & Lebzelter, T., 2007, Rev. Mod. Astr., 19, 251 CrossRef
Shinoda, K., Yanagisawa, S., Sato, K., & Hirakuri, K., 2006, J. Crystal Growth, 288, 84 CrossRef
Suto, H., Sogawa, H., Tachibana, S., et al., 2006, MNRAS, 370, 1599 CrossRef