Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:13:09.174Z Has data issue: false hasContentIssue false

Importance of Thermodynamics for Fragmentation and Star Formation

Published online by Cambridge University Press:  04 October 2008

R.S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
P.C. Clark
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
S.C.O. Glover
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
Get access

Abstract

We discuss results from numerical simulations of star formation under various environmental conditions ranging from the turbulent interstellar medium to low-mass halos in the early universe. The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. The thermodynamic state of the gas is a result of the balance between heating and cooling processes, which in turn are determined by atomic and molecular physics and by chemical abundances. Features in the effective equation of state of the gas, such as a transition from a cooling to a heating regime, define a characteristic mass scale for fragmentation and so set the peak of the initial mass function of stars (IMF). As it is based on fundamental physical quantities and constants, this is an attractive approach to explain the apparent universality of the IMF in the solar neighborhood as well as the transition from purely primordial high-mass star formation to the low-mass mode observed today.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Bryan, G.L., & Norman, M.L., 2002, Science, 295, 93 CrossRef
Ballesteros-Paredes, J., Klessen, R.S., Mac Low, M.-M., & Vázquez-Semadeni, E., 2006, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K. (University of Arizona Press, Tucson) [astro-ph/0603357]
Beers, T.C., & Christlieb, N., 2005, ARA&A, 43, 531 CrossRef
Bromm, V., Ferrara, A., Coppi, P.S., & Larson, R.B., 2001, MNRAS, 328, 969 CrossRef
Bromm, V., Coppi, P.S., & Larson, R.B., 2002, ApJ, 564, 23 CrossRef
Chabrier, G., 2003, PASP, 115, 763 CrossRef
Christlieb, N., Bessell, M.S., Beers, T.C., et al., 2002, Nature, 419, 904 CrossRef
Clark, P.C., Glover, S.C.O., & Klessen, R.S., 2008, ApJ, 672, 757 CrossRef
Jappsen, A.-K., Klessen, R.S., Larson, R.B., Li, Y., & Mac Low, M.-M., 2005, A&A, 435, 611
Kroupa, P., 2002, Science, 295, 82 CrossRef
Larson, R.B., 1985, MNRAS, 214, 379 CrossRef
Larson, R.B., 2003, Rep. Prog. Phys., 66, 1651 CrossRef
Li, Y., Klessen, R.S., & Mac Low, M.-M., 2003, ApJ, 592, 975 CrossRef
Mac Low, M.-M., & Klessen, R.S., 2004, Rev. Mod. Phys., 76, 125 CrossRef
Omukai, K., Tsuribe, T., Schneider, R., & Ferrara, A., 2005, ApJ, 626, 627 CrossRef
O'Shea, B.W., & Norman, M.L., 2007, ApJ, 654, 66 CrossRef
Schneider, R., Omukai, K., Inoue, A.K., & Ferrara, A., 2006, MNRAS, 369, 1437 CrossRef
Spaans, M., & Silk, J., 2000, ApJ , 538, 115 CrossRef
Spaans, M., & Silk, 2005, ApJ, 626, 644 CrossRef
Tsuribe, T., & Omukai, K., 2006, ApJ, 642, L61 CrossRef
Vázquez-Semadeni, E., Passot, T., & Pouquet, A., 1996, ApJ, 473, 881 CrossRef
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T., 2006, ApJ, 652, 6 CrossRef