Published online by Cambridge University Press: 19 December 2013
High precision photometry as performed by the CoRoT and Kepler satellites on-board instruments has allowed to detect stellar oscillations over the whole HR diagram. Oscillation frequencies are closely related to stellar interior properties via the density and sound speed profiles, themselves tightly linked with the mass and evolutionary state of stars. Seismic diagnostics performed on stellar internal structure models allow to infer the age and mass of oscillating stars. The accuracy and precision of the age determination depend both on the goodness of the observational parameters (seismic and classical) and on our ability to model a given star properly. They therefore suffer from any misunderstanding of the physical processes at work inside stars (as microscopic physics, transport processes...). In this paper, we recall some seismic diagnostics of stellar age and we illustrate their efficiency in age-dating the CoRoT target HD 52265.