Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:35:58.822Z Has data issue: false hasContentIssue false

The Fresnel Diffraction: A Story of Light and Darkness

Published online by Cambridge University Press:  13 March 2013

C. Aime
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique, Observatoire de la Côte d’Azur, Parc Valrose, 06108 Nice, France
É. Aristidi
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique, Observatoire de la Côte d’Azur, Parc Valrose, 06108 Nice, France
Y. Rabbia
Affiliation:
Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique, Observatoire de la Côte d’Azur, Parc Valrose, 06108 Nice, France
Get access

Abstract

In a first part of the paper we give a simple introduction to the free space propagation of light at the level of a Master degree in Physics. The presentation promotes linear filtering aspects at the expense of fundamental physics. Following the Huygens-Fresnel approach, the propagation of the wave writes as a convolution relationship, the impulse response being a quadratic phase factor. We give the corresponding filter in the Fourier plane. As an illustration, we describe the propagation of wave with a spatial sinusoidal amplitude, introduce lenses as quadratic phase transmissions, discuss their Fourier transform properties and give some properties of Soret screens. Classical diffractions of rectangular diaphragms are also given here. In a second part of the paper, the presentation turns into the use of external occulters in coronagraphy for the detection of exoplanets and the study of the solar corona. Making use of Lommel series expansions, we obtain the analytical expression for the diffraction of a circular opaque screen, giving thereby the complete formalism for the Arago-Poisson spot. We include there shaped occulters. The paper ends up with a brief application to incoherent imaging in astronomy.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aime, C., 2005, A&A, 434, 785
Arenberg, J.W., Lo, A.S., Glassman, T.M., & Cash, W., 2007, C.R. Physique, 8, 438 CrossRef
Born, M., & Wolf, E., 2006, Principles of Optics, 7th Ed. (Cambridge University Press), 484
Cash, W., 2011, ApJ, 738, 76 CrossRef
Koechlin, L., Serre, D., & Deba, P., 2009, Ap&SS, 320, 225
Françon, M., 1979, Optical image formation and processing (New York: Academic Press)
Goodman, J.W., 1985, Statistical Optics (New York, NY: John Wiley and Sons)
Goodman, J.W., 2005, Introduction to Fourier Optics (Roberts and Company Publishers)
Koutchmy, S., 1988, Space Sci. Rev., 47, 95 CrossRef
Labeyrie, A., 1970, A&A, 6, 85 PubMed
Lamy, P., Damé, L., Vivès, S., & Zhukov, A., 2010, SPIE, 7731, 18
Nazarathy, M., & Shamir, J., 1980, J. Opt. Soc. Am., 70, 150 CrossRef
de Senarmont, M., Verdet, E., & Fresnel, L., 1866, Oeuvres complètes d’Augustin Fresnel (Paris, Imprimerie Impériale)
Wolfram Mathematica, 2012, Wolfram Research, Inc., Champaign, IL