Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T10:16:25.155Z Has data issue: false hasContentIssue false

Coronal jets in an inclined coronal magnetic field : a parametric 3D MHD study

Published online by Cambridge University Press:  27 June 2012

K. Dalmasse
Affiliation:
LESIA-Observatoire de Paris, CNRS, UPMC Univ., Paris 06, Univ. Paris-Diderot, France
E. Pariat
Affiliation:
LESIA-Observatoire de Paris, CNRS, UPMC Univ., Paris 06, Univ. Paris-Diderot, France
S.K. Antiochos
Affiliation:
Space Weather Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
C.R. DeVore
Affiliation:
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375, USA
Get access

Abstract

X-ray solar coronal jets are short–duration, fast, well collimated plasma brightenings occurring in the solar corona. To explain and understand the processes driving the jets, one must be able to model an explosive release of free energy. Magnetic reconnection is believed to play a key role in the generation of these energetic bursting events. The model of jets that we have been developing is based on a magnetic field constructed by embedding a vertical magnetic dipole in a uniform open magnetic field. In this study, we investigate the influence of the inclination of the open field on the properties of the jet using numerical simulations. We will show that the inclination of the open field is of critical importance for the properties of the jet such as the energy released. We conclude that the characteristics of the open field at the time of observations are a central criterion that must be taken into account and reported on in observational studies.

Type
Research Article
Copyright
© EAS, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DeVore, C.R., 1991, J. Comput. Phys., 92, 142 CrossRef
Kamio, S., Curdt, W., Teriaca, L., Inhester, B., & Solanki, S.K., 2010, A&A, 510, L1
Liu, W., Berger, T.E., Title, A.M., Tarbell, T.D., & Low, B.C., 2011, ApJ, 728, 103 CrossRef
MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., & Packer, C., 2000, Comput. Phys. Commun., 126, 330 CrossRef
Nisticò, G., Bothmer, V., Patsourakos, S., & Zimbardo, G., 2009, Sol. Phys., 259, 87 CrossRef
Pariat, E., Antiochos, S.K., & DeVore, C.R., 2009, ApJ, 691, 61 CrossRef
Pariat, E., Antiochos, S.K., & DeVore, C.R., 2010, ApJ, 714, 1762 CrossRef
Patsourakos, S., Pariat, E., Vourlidas, A., Antiochos, S.K., & Wuelser, J.P., 2008, ApJ, 680, L73 CrossRef
Rachmeler, L.A., Pariat, E., DeForest, C.E., Antiochos, S.K., & Török, T., 2010, ApJ, 715, 1556 CrossRef
Schmieder, B., Shibata, K., Van Driel-Gesztelyi, L., & Freeland, S., 1995, Sol. Phys., 156, 245 CrossRef
Shibata, K., et al., 1992, PASJ, 44, L173
Savcheva, A., et al., 2007, PASJ, 59, 771
Shimojo, M., Shibata, K., & Harvey, K.L., 1998, Sol. Phys., 178, 379CrossRef