Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T07:06:27.079Z Has data issue: false hasContentIssue false

Constrained Minimization Algorithms

Published online by Cambridge University Press:  13 March 2013

H. Lantéri
Affiliation:
Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Campus Valrose, 06108 Nice Cedex 2, France
C. Theys
Affiliation:
Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Campus Valrose, 06108 Nice Cedex 2, France
C. Richard
Affiliation:
Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Campus Valrose, 06108 Nice Cedex 2, France
Get access

Abstract

In this paper, we consider the inverse problem of restoring an unknown signal or image, knowing the transformation suffered by the unknowns. More specifically we deal with transformations described by a linear model linking the unknown signal to an unnoisy version of the data. The measured data are generally corrupted by noise. This aspect of the problem is presented in the introduction for general models. In Section 2, we introduce the linear models, and some examples of linear inverse problems are presented. The specificities of the inverse problems are briefly mentionned and shown on a simple example. In Section 3, we give some information on classical distances or divergences. Indeed, an inverse problem is generally solved by minimizing a discrepancy function (divergence or distance) between the measured data and the model (here linear) of such data. Section 4 deals with the likelihood maximization and with their links with divergences minimization. The physical constraints on the solution are indicated and the Split Gradient Method (SGM) is detailed in Section 5. A constraint on the inferior bound of the solution is introduced at first; the positivity constraint is a particular case of such a constraint. We show how to obtain strictly, the multiplicative form of the algorithms. In a second step, the so-called flux constraint is introduced, and a complete algorithmic form is given. In Section 6 we give some brief information on acceleration method of such algorithms. A conclusion is given in Section 7.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertero, M., 1989, Adv. Electr. Elect. Phys., 75, 1 CrossRef
Bertero, M., & Boccacci, P., 1998, Introduction to inverse problems in imaging (IOP Publishing)
Heinz, D.C., & Chang, C.I., 2001, IEEE. Trans. G.R.S, 39, 529
Lee, D.D., & Seung, H.S., 2000, NIPS
Cichocki, A., Zdunek, R., Phan, A.H., & Amari, S.I., 2009, Non negative matrix and tensor factorization (J. Wiley)
Andrews, H.C., & Hunt, B.R., 1977, Digital Image Restoration (Prentice Hall)
Demoment, G., 1989, IEEE Trans. ASSP, 12, 2024 CrossRef
Bertero, M., Lanteri, H., & Zanni, L., 2008, in Mathematical methods in Biomedical imaging and IMRT (Edizioni della normale, Pisa)
Ayers, G.R., & Dainty, J.C., 1988, Opt. Lett., 13, 428
Lane, R.G., 1992, J. Opt. Soc. Am. A, 9, 1508 CrossRef
Hadamard, J., 1923, Lectures on the Cauchy problem in linear partial differential equations (Yale University Press, New Haven)
Basseville, M., 1996, Information: entropies, divergences et moyennes, Technical Report, 1020, IRISA
Taneja, I.J., 2005, On mean divergences measures, Math. ST
Csiszar, I., 1991, Ann. Statist., 19, 2032 CrossRef
Burbea, J., & Rao, C.R., 1982, IEEE Trans. IT, 28, 489 CrossRef
Bregman, L.M., 1967, URSS Comput. Math. Math. Phys., 7, 200 CrossRef
Taupin, D., 1988, Probabilities, data reduction and error analysis in the physical sciences (Les Editions de Physique)
Kullback, S., & Leibler, R.A., 1951, Annals Math. Statistics, 22, 79 CrossRef
Lanteri, H., Roche, M., Cuevas, O., & Aime, C., 2001, Sig. Proc., 54, 945
Lanteri, H., Roche, M., & Aime, C., 2002, Inv. Probl., 18, 1397
Lanteri, H., Roche, M., Gaucherel, P., & Aime, C., 2002, Sig. Proc., 82, 1481
Bertsekas, D., 1995, Non Linear Programming (Athena Scientific)
Daube-Witherspoon, M.E., & Muehlehnner, , 1986, IEEE Trans. Medical Imaging, 5, 61 CrossRef
Richardson, W.H., 1972, J. Opt. Soc. Am., 1, 55 CrossRef
Lucy, L.B., 1974, AJ, 79, 745 CrossRef
De Pierro, A.R., 1985, IEEE Trans. Medical Imaging, 6, 124
Dempster, A.D., Laird, N.M., & Rubin, D.B., 1977, J. Royal Stat. Soc. B, 39, 1
Lanteri, H., Theys, C., Benvenuto, F., & Mary, D., 2009, Gretsi
Lanteri, H., Theys, C., Fevotte, C., & Richard, C., 2010, Eusipco
Biggs, D.S.C., & Andrews, M., 1997, Appl. Optics, 36, 1766 CrossRef
Nesterov, Yu., E., 1983, Soviet Math. Dokl, 27, 372
Beck, A., & Teboulle, M., 2010, in Convex Optimization in Signal Processing and Communications, ed. D. Palomar & Y. Eldar (Cambridge University Press), 33