Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:36:32.901Z Has data issue: false hasContentIssue false

Angular momentum during star formation and early evolution

Published online by Cambridge University Press:  27 September 2013

P. Hennebelle
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM/IRFU/SAp – CNRS – Université Paris Diderot, 91191 Gif-sur-Yvette Cedex, France LERMA (UMR CNRS 8112), École Normale Supérieure
S. Fromang
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM/IRFU/SAp – CNRS – Université Paris Diderot, 91191 Gif-sur-Yvette Cedex, France
S. Mathis
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM/IRFU/SAp – CNRS – Université Paris Diderot, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

Angular momentum is one of the most fundamental properties of matter in our universe, which has deep consequences on its evolution. In particular, the formation and the physical characteristics of cosmic structures such as galaxies, stars and planets are intimately linked to the amount of angular momentum they carry, to the way it is redistributed within the system and exchanged with the surrounding environment. Considerable efforts have been undertaken during the last decades to identify and quantify the various physical mechanisms responsible for the transport of angular momentum in these objects. While some of them are relatively well understood, in many circumstances the underlying mechanism turns out to be extremely complex and very challenging. In this introductory chapter, we first introduce some general considerations on the angular momentum impact and transport. We then derive the MHD equations both in the ideal and non-ideal limit. Finally, after deriving the conservative form of the angular momentum equation, we discuss in more details some of the mechanisms that can contribute to the transport of angular momentum in various astrophysical contexts.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balbus, S., 2011, ppcd.book, 237, Magnetohydrodynamics of Protostellar Disks
Balbus, S., & Papaloizou, J., 1999, ApJ, 521, 650CrossRef
Bodenheimer, P., 1995, ARA&A, 33, 199CrossRef
Brun, A.-S., Miesch, M.S., & Toomre, J., 2004, ApJ, 614, 1073CrossRef
Brun, A.-S., Miesch, M.S., & Toomre, J., 2011, ApJ, 742, id. 79CrossRef
Brun, A.-S., 2011, EAS Publications Series, 44, 81Google Scholar
Decressin, T., et al., 2009, A&A, 495, 271
Draine, B., Roberge, W., & Dalgarno, A., 1983, ApJ, 264, 485CrossRef
Goldsmith, P., & Arquilla, R., ApJ, 1984, 279, 664
Goodman, A., Heiles, C., Myers, P., & Usten, R., 1993, ApJ, 406, 528CrossRef
Kawaler, S., 1988, ApJ, 333, 236CrossRef
Larson, R., 1981, MNRAS, 194, 809CrossRef
Lodato, G. , & Rice, K., 2004, MNRAS, 351, 630CrossRef
Mathis, S., 2013, LNP, 865, 23
Mathis, S., & Zahn, J.-P., 2004, A&A, 425, 229
Mathis, S., & Zahn, J.-P., 2005, A&A, 440, 653PubMed
Matt, S., & Pudritz, R., 2005, ApJ, 632, L135CrossRef
Mestel, L., 1968, MNRAS, 138, 359CrossRef
Mouschovias, T.C., 1985, A&A, 142, 41
Mouschovias, T.C., 1991, inNATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, ed. Lada, C.J. & Kylafis, N.D., 61CrossRefGoogle Scholar
Paczynski, B., 1978, Acta Astron., 28, 91
Spruit, H., 2013 [arXiv1301.5572]
Weber, E., & Davis, L., 1967, ApJ, 148, 217CrossRef
Zahn, J.-P., 1992, A&A, 265, 115PubMed