Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T17:10:26.787Z Has data issue: false hasContentIssue false

Smoothness of Metropolis-Hastings algorithm and application to entropy estimation

Published online by Cambridge University Press:  21 May 2013

Didier Chauveau
Affiliation:
MAPMO – UMR 7349, Fédération Denis Poisson, Université d’Orléans et CNRS BP 6759, 45067 Orléans Cedex 2, France. [email protected]
Pierre Vandekerkhove
Affiliation:
LAMA, CNRS UMR 8050, Université de Marne-la-Vallée, 5 Bd. Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France; [email protected]
Get access

Abstract

The transition kernel of the well-known Metropolis-Hastings (MH) algorithm has a point mass at the chain’s current position, which prevent direct smoothness properties to be derived for the successive densities of marginals issued from this algorithm. We show here that under mild smoothness assumption on the MH algorithm “input” densities (the initial, proposal and target distributions), propagation of a Lipschitz condition for the iterative densities can be proved. This allows us to build a consistent nonparametric estimate of the entropy for these iterative densities. This theoretical study can be viewed as a building block for a more general MCMC evaluation tool grounded on such estimates.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, I.A. and Lin, P.E., A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inf. Theory 22 (1976) 372375. Google Scholar
Ahmad, I.A. and Lin, P.E., A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inf. Theory 36 (1989) 688692. Google Scholar
Andrieu, C. and Thoms, J., A tutorial on adaptive MCMC. Stat. Comput. 18 (2008) 343373. Google Scholar
Atchadé, Y.F. and Rosenthal, J., On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 (2005) 815828. Google Scholar
P. Billingsley, Probability and Measure, 3rd edition. Wiley, New York (2005).
Chauveau, D. and Vandekerkhove, P., Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal. Scand. J. Stat. 29 (2002) 1329. Google Scholar
Chauveau, D. and Vandekerkhove, P., A Monte Carlo estimation of the entropy for Markov chains. Methodol. Comput. Appl. Probab. 9 (2007) 133149. Google Scholar
Dmitriev, Y.G. and Tarasenko, F.P., On the estimation of functionals of the probability density and its derivatives. Theory Probab. Appl. 18 (1973) 628633. Google Scholar
Dmitriev, Y.G. and Tarasenko, F.P., On a class of non-parametric estimates of non-linear functionals of density. Theory Probab. Appl. 19 (1973) 390394. Google Scholar
Douc, R., Guillin, A., Marin, J.M. and Robert, C.P., Convergence of adaptive mixtures of importance sampling schemes. Ann. Statist. 35 (2007) 420448. Google Scholar
Dudevicz, E.J. and Van Der Meulen, E.C. Entropy-based tests of uniformity. J. Amer. Statist. Assoc. 76 (1981) 967974. Google Scholar
Eggermont, P.P.B. and LaRiccia, V.N., Best asymptotic normality of the Kernel density entropy estimator for Smooth densities. IEEE Trans. Inf. Theory 45 (1999) 13211326. Google Scholar
W.R. Gilks, S. Richardson and D.J. Spiegelhalter, Markov Chain Monte Carlo in practice. Chapman & Hall, London (1996)
Gilks, W.R., Roberts, G.O. and Sahu, S.K., Adaptive Markov chain Monte carlo through regeneration. J. Amer. Statist. Assoc. 93 (1998) 10451054. Google Scholar
Györfi, L. and Van Der Meulen, E.C., Density-free convergence properties of various estimators of the entropy. Comput. Statist. Data Anal. 5 (1987) 425436. Google Scholar
Györfi, L. and Van Der Meulen, E.C., An entropy estimate based on a Kernel density estimation, Limit Theorems in Probability and Statistics Pécs (Hungary). Colloquia Mathematica societatis János Bolyai 57 (1989) 229240. Google Scholar
Haario, H., Saksman, E. and Tamminen, J., An adaptive metropolis algorithm. Bernouilli 7 (2001) 223242. Google Scholar
Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97109. Google Scholar
L. Holden, Geometric convergence of the Metropolis-Hastings simulation algorithm. Statist. Probab. Lett. 39 (1998).
Ivanov, A.V. and Rozhkova, M.N., Properties of the statistical estimate of the entropy of a random vector with a probability density (in Russian). Probl. Peredachi Inform. 17 (1981) 3343. Translated into English in Probl. Inf. Transm. 17 (1981) 171–178. Google Scholar
Jarner, S.F. and Hansen, E., Geometric ergodicity of metropolis algorithms. Stoc. Proc. Appl. 85 (2000) 341361. Google Scholar
Mengersen, K.L. and Tweedie, R.L., Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 (1996) 101121. Google Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 10871092. Google Scholar
Mokkadem, A., Estimation of the entropy and information of absolutely continuous random variables. IEEE Trans. Inf. Theory 23 (1989) 95101. Google Scholar
R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2010), ISBN 3-900051-07-0.
Roberts, G.O. and Rosenthal, J.S., Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16 (2001) 351367. Google Scholar
Roberts, G.O. and Tweedie, R.L., Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95110. Google Scholar
D. Scott, Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley, New York (1992).
Tarasenko, F.P., On the evaluation of an unknown probability density function, the direct estimation of the entropy from independent observations of a continuous random variable and the distribution-free entropy test of goodness-of-fit. Proc. IEEE 56 (1968) 20522053. Google Scholar