Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T09:01:55.308Z Has data issue: false hasContentIssue false

Pricing rules under asymmetric information

Published online by Cambridge University Press:  01 March 2007

Shigeyoshi Ogawa
Affiliation:
Department of Mathematical Sciences Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan; [email protected]
Monique Pontier
Affiliation:
U.M.R. CNRS C 5583, Laboratoire de statistique et probabilités, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France; [email protected]
Get access

Abstract

We consider an extension of the Kyle and Back's model [Back, Rev. Finance Stud.5 (1992) 387–409; Kyle, Econometrica35 (1985) 1315–1335],meaning a model for the market with a continuous time risky assetand asymmetrical information. There are threefinancial agents: the market maker, an insider trader (who knows a randomvariable V which will be revealed at final time) and a non informed agent. Here we assume thatthe non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy.Optimal control theory is applied to obtain a pricing ruleand to prove the existenceof an equilibrium price when the insider trader and the non informedagent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent's optimal strategy is to do nothing, in other words to be non strategic.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amendinger, J., Martingale representation theorems for initially enlarged filtrations. Stoch. Proc. Appl. 89 (2000) 101116. CrossRef
Amendinger, J., Imkeller, P. and Schweizer, M., Additional logarithmic utility of an insider. Stoch. Proc. Appl. 75 (1998) 263286. CrossRef
Back, K., Insider trading in continuous time. Rev. Financial Stud. 5 (1992) 387409. CrossRef
B. Biais, T. Mariotti, G. Plantin and J.C. Rochet, Dynamic security design. Rev. Economic Stud. to appear.
Cho, K.H. and Karoui, N. EL, Insider trading and nonlinear equilibria:uniqueness: single auction case. Annales d'économie et de statistique 60 (2000) 2141. CrossRef
Cho, K.H., Continuous auctions and insider trading: uniqueness and risk aversion. Finance and Stochastics 7 (2003) 4771. CrossRef
M. Chaleyat-Maurel and T. Jeulin, Grossissement gaussien de la filtration brownienne, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 59–109.
N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole d'été de Saint Flour 1979, Lect. Notes Math. 872 (1981) 73–238.
Föllmer, H. and Imkeller, P., Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569586.
W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer, Berlin (1975).
A. Grorud and M. Pontier, Comment détecter le délit d'initié ? CRAS, Sér. 1 324 (1997) 1137–1142.
A. Grorud and M. Pontier, Insider trading in a continuous time market model. IJTAF. 1 (1998) 331–347.
A. Grorud and M. Pontier, Probabilité neutre au risque et asymétrie d'information. CRAS, Sér. 1 329 (1999) 1009–1014.
A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. IJTAF. 4 (2001) 285–302.
Hillairet, C., Existence of an equilibrium with discontinuous prices, asymmetric information and non trivial initial σ-fields. Math. Finance 15 (2005) 99117. CrossRef
J. Jacod, Grossissement initial, Hypothèse H' et Théorème de Girsanov, in Séminaire de Calcul Stochastique 1982–83, Paris, Lect. Notes Math. 1118 (1985) 15–35.
T. Jeulin, Semi-martingales et grossissement de filtration. Springer-Verlag (1980).
Continuous, A.S. Kyle auctions and insider trading. Econometrica 53 (1985) 13151335.
Karatzas, I. and Pikovsky, I., Anticipative portfolio optimization. Adv. Appl. Probab. 28 (1996) 10951122.
G. Lasserre, Quelques modèles d'équilibre avec asymétrie d'information. Thèse soutenue à l'université de Paris VII, le 16 décembre 2003.
G. Lasserre, Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics 8 (2004) 285–309.
P. Protter, Stochastic Integration and Differential Equations. Springer-Verlag (1990).
Schweizer, M., On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Anal. Appl. 13 (1995) 573599. CrossRef
M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect Notes Math. 1118 (1985) 6–14.