Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:10:47.401Z Has data issue: false hasContentIssue false

Plug-in estimators for higher-ordertransition densities in autoregression

Published online by Cambridge University Press:  26 March 2009

Anton Schick
Affiliation:
Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, USA.
Wolfgang Wefelmeyer
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany; [email protected]
Get access

Abstract

In this paper we obtain root-n consistency and functional central limittheorems in weighted L 1-spaces for plug-in estimators of thetwo-step transition density in the classical stationary linear autoregressivemodel of order one, assuming essentially only that the innovation density has bounded variation. We also show that plugging in a properly weighted residual-basedkernel estimator for the unknown innovation densityimproves on plugging in an unweighted residual-based kernel estimator. These weights are chosen to exploit thefact that the innovations have mean zero.If an efficient estimator for the autoregression parameter is used,then the weighted plug-in estimator for the two-step transition density is efficient. Our approach generalizes to invertible linear processes.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athreya, K.B. and Atuncar, G.S., Kernel estimation for real-valued Markov chains. Sankhyā Ser. A 60 (1998) 117.
P.J. Bickel, C.A.J. Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York (1998).
Drost, F.C., Klaassen, C.A.J. and Werker, B.J.M., Adaptive estimation in time-series models. Ann. Statist. 25 (1997) 786817.
Frees, E.W., Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 (1994) 517525. CrossRef
Giné, E. and Mason, D., On local U-statistic processes and the estimation of densities of functions of several variables. Ann. Statist. 35 (2007a) 11051145. CrossRef
Giné, E. and Mason, D., Laws of the iterated logarithm for the local U-statistic process. J. Theoret. Probab. 20 (2007b) 457485. CrossRef
Jeganathan, P., Some aspects of asymptotic theory with applications to time series models. Econometric Theory 11 (1995) 818887. CrossRef
Koul, H.L. and Schick, A., Efficient estimation in nonlinear autoregressive time series models. Bernoulli 3 (1997) 247277. CrossRef
Kreiss, J.-P., On adaptive estimation in stationary ARMA processes. Ann. Statist. 1 (1987a) 112133. CrossRef
Kreiss, J.-P., On adaptive estimation in autoregressive models when there are nuisance functions. Statist. Decisions 5 (1987b) 5976.
M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 23, Springer, Berlin (1991).
Müller, U.U., Schick, A. and Wefelmeyer, W., Weighted residual-based density estimators for nonlinear autoregressive models. Statist. Sinica 15 (2005) 177195.
Nguyen, H.T., Recursive nonparametric estimation in stationary Markov processes. Publ. Inst. Statist. Univ. Paris 29 (1984) 6584.
Owen, A.B., Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988) 237249. CrossRef
A.B. Owen, Empirical Likelihood. Monographs on Statistics and Applied Probability 92, Chapman & Hall / CRC, London (2001).
Roussas, G.G., Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 7387.
G.G. Roussas, Nonparametric estimation in mixing sequences of random variables. J. Statist. Plann. Inference 18 (1988). 135–149.
Saavedra, A. and Cao, R., Rate of convergence of a convolution-type estimator of the marginal density of an MA(1) process. Stoch. Proc. Appl. 80 (1999) 129155. CrossRef
Saavedra, A. and Cao, R., On the estimation of the marginal density of a moving average process. Canad. J. Statist. 28 (2000) 799815. CrossRef
Schick, A. and Wefelmeyer, W., Root-n consistent and optimal density estimators for moving average processes. Scand. J. Statist. 31 (2004a) 6378. CrossRef
Schick, A. and Wefelmeyer, W., Root-n consistent density estimators for sums of independent random variables. J. Nonparametr. Statist. 16 (2004b) 925935. CrossRef
Schick, A. and Wefelmeyer, W., Functional convergence and optimality of plug-in estimators for stationary densities of moving average processes. Bernoulli 10 (2004c) 889917. CrossRef
A. Schick and W. Wefelmeyer, Convergence rates in weighted L 1-spaces of kernel density estimators for linear processes. Technical Report, Department of Mathematical Sciences, Binghamton University (2006).
Schick, A. and Wefelmeyer, W., Uniformly root-n consistent density estimators for weakly dependent invertible linear processes. Ann. Statist. 35 (2007a) 815843. CrossRef
Schick, A. and Wefelmeyer, W., Root-n consistent density estimators of convolutions in weighted L 1-norms. J. Statist. Plann. Inference 137 (2007b) 17651774. CrossRef
A. Schick and W. Wefelmeyer, Root-n consistency in weighted L 1-spaces for density estimators of invertible linear processes. in: Stat. Inference Stoch. Process. 11 (2008) 281–310.