Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T17:56:03.245Z Has data issue: false hasContentIssue false

Penalisations of multidimensional Brownian motion, VI

Published online by Cambridge University Press:  11 June 2009

Bernard Roynette
Affiliation:
Université Henri Poincaré, Institut Elie Cartan, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France; [email protected]
Pierre Vallois
Affiliation:
Université Henri Poincaré, Institut Elie Cartan, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France; [email protected]
Marc Yor
Affiliation:
Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI et VII, 4 place Jussieu – Case 188, 75252 Paris Cedex 05, France. Institut Universitaire de France, France.
Get access

Abstract

As in preceding papers inwhich we studied the limits of penalized 1-dimensional Wienermeasures with certain functionals Γt, we obtain here theexistence of the limit, as t → ∞, of d-dimensional Wienermeasures penalized by a function of the maximum up to time t ofthe Brownian winding process (for d = 2), or in {d} 2dimensions for Brownian motionprevented to exit a cone before time t. Various extensions of these multidimensional penalisations arestudied, and the limit laws are described. Throughout this paper, the skew-product decomposition ofd-dimensional Brownian motion plays an important role.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne. Lect. Notes Math. 194. Springer-Verlag, Berlin (1971).
Durrett, R., A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion. Ann. Probab. 10 (1982) 244246. CrossRef
I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition (1991).
N.N. Lebedev, Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, unabridged and corrected republication.
P.A. Meyer, Probabilités et potentiel. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles, No. 1318. Hermann, Paris (1966).
Pap, G. and Yor, M., The accuracy of Cauchy approximation for the windings of planar Brownian motion. Period. Math. Hungar. 41 (2000) 213226. CrossRef
Pitman, J. and Yor, M., Asymptotic laws of planar Brownian motion. Ann. Probab. 14 (1986) 733779. CrossRef
Pitman, J. and Yor, M., Further asymptotic laws of planar Brownian motion. Ann. Probab. 17 (1989) 9651011. CrossRef
D. Revuz and M. Yor, Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition (1999).
B. Roynette and M. Yor, Penalising Brownian paths. Lect. Notes Math. 1969. Springer-Verlag, Berlin (2009).
Roynette, B., Vallois, P. and Yor, M., Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III. Period. Math. Hungar. 50 (2005) 247280. CrossRef
Roynette, B., Vallois, P. and Yor, M.. Limiting laws associated with Brownian motion perturbed by normalized exponential weights I. Studia Sci. Math. Hungar. 43 (2006) 171246.
Roynette, B., Vallois, P. and Yor, M., Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II. Studia Sci. Math. Hungar. 43 (2006) 295360.
B. Roynette, P. Vallois and M. Yor, Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère. In Séminaire de Probabilités, XXXIX (P.A. Meyer, in memoriam). Lect. Notes Math. 1874. Springer, Berlin (2006) 305–336.
Roynette, B., Vallois, P. and Yor, M., Some penalisations of the Wiener measure. Japan. J. Math. 1 (2006) 263290. CrossRef
Roynette, B., Vallois, P. and Yor, M., Some extensions of Pitman's and Ray-Knight's theorems for penalized Brownian motions and their local times, IV. Studia Sci. Math. Hungar. 44 (2007) 469516.
Roynette, B., Vallois, P. and Yor, M., Penalizing a Bes(d) process (0 < d < 2) with a function of its local time at 0, V. Studia Sci. Math. Hungar. 45 (2008) 67124.
Roynette, B., Vallois, P. and Yor, M., Penalizing a Brownian motion with a function of the lengths of its excursions, VII. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 421452. CrossRef
Spitzer, F., Some theorems concerning 2-dimensional Brownian motion. Trans. Am. Math. Soc. 87 (1958) 187197.
D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Classics in Mathematics. Springer-Verlag, Berlin, (2006). Reprint of the 1997 edition.
S. Watanabe, On time inversion of 1-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75) 115–124.