Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T07:53:30.743Z Has data issue: false hasContentIssue false

Lifetime asymptotics of iterated Brownian motion in $\mathbb{R}^{n}$

Published online by Cambridge University Press:  31 March 2007

Erkan Nane*
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA; [email protected] Current address: Department of Statistics and Probability, Michigan State University, A413 Wells Hall, East Lansing, MI 48824-1027, USA; [email protected]
Get access

Abstract

Let $\tau _{D}(Z) $ be the first exit time ofiterated Brownian motion from a domain $D \subset \mathbb{R}^{n}$ started at $z\in D$ and let $P_{z}[\tau _{D}(Z)>t]$ be itsdistribution. In this paper we establish the exact asymptotics of $P_{z}[\tau _{D}(Z)>t]$ over bounded domains as an improvement of the results in DeBlassie (2004) [DeBlassie, Ann. Appl. Prob.14 (2004) 1529–1558] and Nane (2006) [Nane, Stochastic Processes Appl.116(2006) 905–916], for $z\in D$ $ \displaystyle \lim_{t\to\infty}t^{-1/2}\exp\left(\frac{3}{2}\pi^{2/3}\lambda_{D}^{2/3}t^{1/3}\right)P_{z}[\tau_{D}(Z)>t]= C(z),\nonumber$ 
where $C(z)=(\lambda_{D}2^{7/2})/\sqrt{3 \pi}\left(\psi(z)\int_{D}\psi(y){\rm d}y\right) ^{2}$ . Here λD is thefirst eigenvalue of the Dirichlet Laplacian $\frac{1}{2}\Delta$ inD, and ψ is the eigenfunction corresponding toλD . We also study lifetime asymptotics of Brownian-time Brownian motion, $Z^{1}_{t} = z+X(|Y(t)|)$ , where X t and Y t are independentone-dimensional Brownian motions, in several unbounded domains. Using these results we obtain partial results for lifetime asymptotics of iterated Brownian motion in these unbounded domains.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allouba, H., Brownian-time processes: The pde connection and the corresponding Feynman-Kac formula. Trans. Amer. Math. Soc. 354 (2002) 46274637. CrossRef
Allouba, H. and Zheng, W., Brownian-time processes: The pde connection and the half-derivative generator. Ann. Prob. 29 (2001) 17801795.
Bañuelos, R. and DeBlassie, R.D., The exit distribution for iterated Brownian motion in cones. Stochastic Processes Appl. 116 (2006) 3669. CrossRef
Bañuelos, R., DeBlassie, R.D. and Smits, R., The first exit time of planar Brownian motion from the interior of a parabola. Ann. Prob. 29 (2001) 882901.
Bañuelos, R., Smits, R., Brownian motion in cones. Probab. Theory Relat. Fields 108 (1997) 299319. CrossRef
N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press, Cambridge (1987).
K. Burdzy, Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, E. Çinlar, K.L. Chung and M.J. Sharpe, Eds., Birkhäuser, Boston (1993) 67–87.
K. Burdzy, Variation of iterated Brownian motion, in Workshops and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Particle Systems, D.A. Dawson, Ed., Amer. Math. Soc. Providence, RI (1994) 35–53.
Burdzy, K. and Khoshnevisan, D., Brownian motion in a Brownian crack. Ann. Appl. Probabl. 8 (1998) 708748.
Csàki, E., Csörgő, M., Földes, A. and Révész, P., The local time of iterated Brownian motion. J. Theoret. Probab. 9 (1996) 717743. CrossRef
DeBlassie, R.D., Exit times from cones in $\mathbb{R}^{n}$ of Brownian motion. Prob. Th. Rel. Fields 74 (1987) 129. CrossRef
DeBlassie, R.D., Iterated Brownian motion in an open set. Ann. Appl. Prob. 14 (2004) 15291558. CrossRef
DeBlassie, R.D. and Smits, R., Brownian motion in twisted domains. Trans. Amer. Math. Soc. 357 (2005) 12451274. CrossRef
N.G. De Bruijn, Asymptotic methods in analysis. North-Holland Publishing Co., Amsterdam (1957).
Eisenbum, N. and Shi, Z., Uniform oscillations of the local time of iterated Brownian motion. Bernoulli 5 (1999) 4965. CrossRef
W. Feller, An Introduction to Probability Theory and its Applications. Wiley, New York (1971).
Kasahara, Y., Tauberian theorems of exponential type. J. Math. Kyoto Univ. 12 (1978) 209219. CrossRef
D. Khoshnevisan and T.M. Lewis, Stochastic calculus for Brownian motion in a Brownian fracture. Ann. Applied Probabl. 9 (1999) 629–667.
Khoshnevisan, D. and Lewis, T.M., Chung's law of the iterated logarithm for iterated Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 349359.
Laporte, O., Absorption coefficients for thermal neutrons. Phys. Rev. 52 (1937) 7274. CrossRef
The, W. Li first exit time of a Brownian motion from an unbounded convex domain. Ann. Probab. 31 (2003) 10781096.
Lifshits, M. and Shi, Z., The first exit time of Brownian motion from a parabolic domain. Bernoulli 8 (2002) 745765.
Nane, E., Iterated Brownian motion in parabola-shaped domains. Potential Analysis 24 (2006) 105123. CrossRef
Nane, E., Iterated Brownian motion in bounded domains in $\mathbb{R}^{n}$ . Stochastic Processes Appl. 116 (2006) 905916. CrossRef
E. Nane, Higher order PDE's and iterated processes. Accepted Trans. Amer. Math. Soc. math.PR/0508262.
Nane, E., Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab. 11 (2006) 34459 (electronic). CrossRef
E. Nane, Isoperimetric-type inequalities for iterated Brownian motion in $\mathbb{R}^{n}$ . Submitted, math.PR/0602188.
S.C. Port and C.J. Stone, Brownian motion and Classical potential theory. Academic, New York (1978).
Xiao, Y., Local times and related properties of multidimensional iterated Brownian motion. J. Theoret. Probab. 11 (1998) 383408. CrossRef