Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T18:12:00.599Z Has data issue: false hasContentIssue false

Large deviations for quasi-arithmetically self-normalizedrandom variables

Published online by Cambridge University Press:  06 December 2012

Jean-Marie Aubry
Affiliation:
Laboratoire d’Analyse et Mathématiques Appliquées (CNRS UMR 8050), Université Paris-Est Créteil, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France;. [email protected]; [email protected]
Marguerite Zani
Affiliation:
Laboratoire d’Analyse et Mathématiques Appliquées (CNRS UMR 8050), Université Paris-Est Créteil, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France;. [email protected]; [email protected]
Get access

Abstract

We introduce a family of convex (concave) functions called sup (inf) of powers, which areused as generator functions for a special type of quasi-arithmetic means. Using thesemeans, we generalize the large deviation result on self-normalized statistics that wasobtained in the homogeneous case by [Q.-M. Shao, Self-normalized large deviations.Ann. Probab. 25 (1997) 285–328]. Furthermore, in thehomogenous case, we derive the Bahadur exact slope for tests using self-normalizedstatistics.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

R.R. Bahadur, Some limit theorems in statistics. CBMS-NSF Regional Conference Series in Appl. Math. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1971).
Chernoff, H., A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 (1952) 493507. Google Scholar
E. Cuvelier and M. Noirhomme-Fraiture, An approach to stochastic process using quasi-arithmetic means, in Recent advances in stochastic modeling and data analysis, World Scientific (2007) 2–9.
E. Cuvelier and M. Noirhomme-Fraiture, Parametric families of probability distributions for functional data using quasi-arithmetic means with Archimedean generators, in Functional and operatorial statistics, Contrib. Statist. Springer (2008) 127–133.
V.H. de la Peña, T.L. Lai and Q.-M. Shao, Self-normalized processes : Limit theory and statistical applications, in Probab. Appl. (New York). Springer-Verlag, Berlin (2009).
Dembo, A. and Shao, Q.-M., Self-normalized large deviations in vector spaces, in High dimensional probability (Oberwolfach, 1996), Birkhäuser, Basel. Progr. Probab. 43 (1998) 2732. Google Scholar
Dembo, A. and Shao, Q.-M., Large and moderate deviations for Hotelling’s T 2-statistic. Electron. Comm. Probab. 11 (2006) 149159. Google Scholar
G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, 2d ed. (1952).
Kolmogoroff, A., Sur la notion de la moyenne. Rendiconti Accad. d. L. Roma 12 (1930) 388391. Google Scholar
Lai, T.L. and Shao, Q.-M., Self-normalized limit theorems in probability and statistics, in Asymptotic theory in probability and statistics with applications, Int. Press, Somerville, MA Adv. Lect. Math. (ALM) 2 (2008) 343. Google Scholar
Y. Nikitin, Asymptotic efficiency of non parametric tests. Cambridge University Press (1995).
Nagumo, M., Über eine Klasse der Mittelwerte. Japan. J. Math. 7 (1930) 7179. Google Scholar
Porcu, E., Mateu, J. and Christakos, G., Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivar. Anal. 100 (2009) 18301844. Google Scholar
Shao, Q.-M., Self-normalized large deviations. Ann. Probab. 25 (1997) 285328. Google Scholar
Shao, Q.-M., A note on the self-normalized large deviation. Chinese J. Appl. Probab. Statist. 22 (2006) 358362. Google Scholar
Tchirina, A.V., Large deviations for a class of scale-free statistics under the gamma distribution. J. Math. Sci. 128 (2005) 26402655. Google Scholar
Yager, R.R., On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Systems Man Cybernet. 18 (1988) 183190. Google Scholar